文献速递:深度学习胰腺癌诊断--胰腺癌在CT扫描中通过深度学习检测:一项全国性的基于人群的研究

Title 

题目

Pancreatic Cancer Detection on CT Scans with Deep

Learning: A Nationwide Population-based Study

胰腺癌在CT扫描中通过深度学习检测:一项全国性的基于人群的研究

01

文献速递介绍

胰腺癌(PC)的五年生存率是所有癌症中最低的,预计到2030年将成为美国癌症死亡的第二大原因。由于一旦肿瘤体积超过2厘米,预后会急剧恶化,因此早期检测是改善PC的悲观预后最有效的策略。CT是用于帮助检测PC的主要成像方式,但其对小肿瘤的敏感性适中,大约40%的小于2厘米的肿瘤会被漏检。此外,CT的诊断性能依赖于解释者,并且可能受到放射科医师可用性和专业知识差异的影响。因此,需要一个有效的工具来辅助放射科医师提高PC检测的敏感性,这是一个主要的未满足的医疗需求。

近期在深度学习(DL)方面的进步在医学图像分析中显示出巨大的潜力。在我们之前的单中心概念验证研究中,我们展示了一个卷积神经网络(CNN)能够准确地区分PC和非癌性胰腺。然而,在那项研究中,胰腺的分割(即,识别胰腺)是由放射科医师手工执行的。胰腺的分割是最具挑战性的,因为胰腺与多个器官和结构相邻,并且在形状和大小上有着广泛的变化,特别是在PC患者中。然而,一个临床可应用的计算机辅助检测(CAD)工具应该能够在最小的人工注释或劳动下实现分割和分类(即,预测PC的存在或缺失)。

Background 

背景

Approximately 40% of pancreatic tumors smaller than 2 cm are missed at abdominal CT.

大约40%的小于2厘米的胰腺肿瘤在腹部CT扫描中被遗漏。

Conclusions

结论

The deep learning–based tool enabled accurate detection of pancreatic cancer on CT scans, with reasonable sensitivity for tumors smaller than 2 cm.

基于深度学习的工具能够在CT扫描上准确检测胰腺癌,对于小于2厘米的肿瘤具有合理的敏感性。

Results

结果

A total of 546 patients with pancreatic cancer (mean age, 65 years ± 12 [SD], 297 men) and 733 control subjects were ran domly divided into training, validation, and test sets. In the internal test set, the DL tool achieved 89.9% (98 of 109; 95% CI: 82.7, 94.9) sensitivity and 95.9% (141 of 147; 95% CI: 91.3, 98.5) specificity (area under the receiver operating characteristic curve [AUC], 0.96; 95% CI: 0.94, 0.99), without a significant difference (P = .11) in sensitivity compared with the original radiologist report (96.1% [98 of 102]; 9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值