Title
题目
Prostate cancer therapy personalization via multi-modal deep learning on randomized phase III clinical trials
前列腺癌治疗个性化的多模式深度学习在随机三期临床试验中的应用
01
文献速递介绍
在2020年,全球发生了1,414,259例新病例和375,304例前列腺癌死亡病例。虽然前列腺癌通常是缓慢发展的,治疗可能是治愈性的,但由于过度和不足治疗的负面影响,前列腺癌成为导致癌症相关残疾的主要全球原因,并且是男性癌症死亡的主要原因。确定个体患者的最佳治疗方案是困难的,需要考虑他们的整体健康状况,癌症的特征,许多可能治疗的副作用概况,涉及类似诊断患者群的临床试验的结果数据,以及对其预期未来结果的预测。这一挑战由于缺乏可轻易获取的预后工具来更好地对患者进行风险分层而变得更加复杂。
全球用于对患者进行风险分层的最常见系统之一是国家综合癌症网络(NCCN)或于1990年代末开发的D'Amico风险组。该系统基于前列腺的数字直肠检查、血清前列腺特异性抗原(PSA)水平和通过组织病理学评估的肿瘤活检等。这种三级系统构成了世界各地局部前列腺癌治疗建议的基础,但已反复证明其预后和鉴别性能力不佳。这在一定程度上是由于这些模型中核心变量的主观和非特异性特性。例如,格里森分级是在20世纪60年代开发的,即使在专家泌尿外科病理学家中,其间观者间的再现性也不佳。尽管已经创建了更新的临床病理风险分层系统,但其中仍然有三个核心变量—格里森分级、T分期和PSA。
Method
方法
Dataset preparation
In collaboration with NRG Oncology, we obtained access to full patientlevel baseline clinical data, digitized histopathology slides of pretreatmentand posttreatment prostate tissue, and longitudinal outcomes from fivelandmark, large-scale, prospective, randomized, multinational clinical trialscontaining 5654 patients, 16,204 histopathology slides, and >10 years ofmedian follow-up: NRG/RTOG-9202, 9408, 9413, 9910, and 0126 (Table 1).Patients in these trials were randomized across various combinations ofexternal radiotherapy (RT) with or without different durations of androgendeprivation therapy (ADT). The slides were digitized over a period of 1 yearby NRG Oncology using a Leica Biosystems Aperio AT2 digital pathologyscanner at a resolution of 20x. The histopathology images were manuallyreviewed for quality and clarity. Six baseline clinical variables that werecollected across all trials (combined Gle