Title
题目
Evaluation of a Cascaded Deep Learning–based Algorithm for Prostate Lesion Detection at Biparametric MRI
基于级联深度学习算法在双参数MRI中检测前列腺病变的评估
Background
背景
Multiparametric MRI (mpMRI) improves prostate cancer (PCa) detection compared with systematic biopsy, but its interpretation is prone to interreader variation, which results in performance inconsistency. Artificial intelligence (AI) models can assist in mpMRI interpretation, but large training data sets and extensive model testing are required.
系统性活检相比,多参数MRI(mpMRI)在前列腺癌(PCa)检测方面具有优势,但其解读容易受阅片者之间的差异影响,从而导致性能不一致。人工智能(AI)模型可以辅助mpMRI的解读,但需要大量的训练数据集和广泛的模型测试。
Method
方法
This secondary analysis of a prospective registry included consecutive patients with suspected or known PCa who underwent mpMRI, US-guided systematic biopsy, or combined systematic and MRI/US fusion–guided biopsy between April 2019 and September 2022. All lesions were prospectively evaluated using Prostate Imaging Reporting and Data System version 2.1. The lesion- and participant-level performance of a previously developed cascaded deep learning algorithm was compared with histopathologic outcomes and radiologist readings using sensitivity, positive predictive value (PPV), and Dice similarity coefficient (DSC).
这项前瞻性配准的二次分析包括在2019年4月至2022年9月期间进行mpMRI、超声引导的系统性活检或系统性和MRI/超声融合引导活检的连续前列腺癌(PCa)疑似或已确诊患者。所有病变均使用前列腺成像报告和数据系统(PI-RADS)2.1版进行前瞻性评估。将先前开发的级联深度学习算法在病变和参与者层面的表现与组织病理学结果和放射科医生的解读结果进行比较,使用的评价指标包括敏感性、阳性预测值(PPV)和Dice相似系数(DSC)。
Conclusion
结论
The AI algorithm detected cancer-suspicious lesions on biparametric MRI scans with a performance comparable to that of an experienced radiologist. Moreover, the algorithm reliably predicted clinically significant lesions at histopathologic examination.
该人工智能算法在双参数MRI扫描中检测可疑癌变病灶的表现与经验丰富的放射科医生相当。此外,该算法在组织病理学检查中可靠地预测了具有临床意义的病灶。
Results
结果
A total of 658 male participants (median age, 67 years [IQR, 61–71 years]) with 1029 MRI-visible lesions were included. At histopathologic analysis, 45% (294 of 658) of participants had lesions of International Society of Urological Pathology (ISUP) grade group (GG) 2 or higher. The algorithm identified 96% (282 of 294; 95% CI: 94%, 98%) of all participants with clinically significant PCa, whereas the radiologist identified 98% (287 of 294;