通过特征归纳学习和双重多级图神经网络从多模态数据中诊断阿尔茨海默病| 文献速递-大模型与多模态诊断阿尔茨海默症与帕金森疾病应用

Title

题目

Alzheimer’s disease diagnosis from multi-modal data via feature inductive learning and dual multilevel graph neural network

通过特征归纳学习和双重多级图神经网络从多模态数据中诊断阿尔茨海默病

01

文献速递介绍

阿尔茨海默病(AD)是一种常见于老年人的慢性神经退行性疾病,也是导致痴呆的主要原因之一(Khachaturian, 1985; Kucmanski 等, 2016)。AD已经成为21世纪成本最高、死亡率最高、负担最重的疾病之一(Sharma 等, 2019)。因此,诊断AD对于预防其发生和发展具有重要的现实意义(Scheltens 等, 2021)。此外,AD的确切病因仍然不清楚(Gaugler 等, 2022)。识别与AD相关的风险因素对于理解疾病的发病机制以及辅助精确诊断和治疗具有重要意义。

结构磁共振成像(MRI)能够在无创条件下捕捉大脑的结构变化(Vemuri 和 Jack, 2010),因此在AD诊断领域得到了广泛应用(Zarei 等, 2010)。另一方面,随着基因组学的不断发展,研究人员发现一些单核苷酸多态性(SNP)与AD患者的特定大脑结构变化高度相关(Harold 等, 2009; Feulner 等, 2010)。同时,与AD发展相关的神经病理学变化也受到了广泛关注。研究人员发现,脑脊液(CSF)中A-beta蛋白和tau蛋白的异常变化与AD高度相关(Hansson 等, 2006; Kunkle 等, 2019)。此外,研究还表明,年龄、性别和体重也与AD的发生有关(Harold 等, 2009; Scheltens 等, 2021)。

Aastract

摘要

Multi-modal data can provide complementary information of Alzheimer’s disease (AD) and its developmentfrom different perspectives. Such information is closely related to the diagnosis, prevention, and treatment ofAD, and hence it is necessary and critical to study AD through multi-modal data. Existing learning methods,however, usually ignore the influence of feature heterogeneity and directly fuse features in the last stages.Furthermore, most of these methods only focus on local fusion features or global fusion features, neglectingthe complementariness of features at different levels and thus not sufficiently leveraging information embeddedin multi-modal data. To overcome these shortcomings, we propose a novel framework for AD diagnosis thatfuses gene, imaging, protein, and clinical data. Our framework learns feature representations under the samefeature space for different modalities through a feature induction learning (FIL) module, thereby alleviatingthe impact of feature heterogeneity. Furthermore, in our framework, local and global salient multi-modalfeature interaction information at different levels is extracted through a novel dual multilevel graph neuralnetwork (DMGNN). We extensively validate the proposed method on the Alzheimer’s Disease NeuroimagingInitiative (ADNI) dataset and experimental results demonstrate our method consistently outperforms otherstate-of-the-art multi-modal fusion methods. The code is publicly available on the GitHub website.

多模态数据可以从不同角度提供关于阿尔茨海默病(AD)及其发展过程的互补信息,这些信息与AD的诊断、预防和治疗密切相关,因此通过多模态数据研究AD是必要且关键的。然而,现有的学习方法通常忽略了特征异质性的影响,并且在最后阶段直接融合特征。此外,大多数这些方法仅关注局部融合特征或全局融合特征,忽视了不同层次特征的互补性,从而未能充分利用嵌入在多模态数据中的信息。为克服这些不足,我们提出了一种新颖的AD诊断框架,该框架融合了基因、成像、蛋白质和临床数据。我们的框架通过特征归纳学习(FIL)模块,在相同特征空间下学习不同模态的特征表示,从而减轻了特征异质性的影响。此外,在我们的框架中,通过一种新颖的双重多级图神经网络(DMGNN)提取不同层次的局部和全局显著多模态特征交互信息。我们在阿尔茨海默病神经影像计划(ADNI)数据集上对所提出的方法进行了广泛验证,实验结果表明,我们的方法始终优于其他最先进的多模态融合方法。代码已在GitHub网站上公开提供。

Method

方法

In order to better compare the differences between other methodsand the proposed method of this paper, we have drawn an overviewof existing research and frameworks. Fig. 1(a) corresponds to thefirst question in the introduction, the traditional multi-modal

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值