基于深度学习的微出血自动检测及解剖尺度定位|文献速递-视觉大模型医疗图像应用

Title

题目

Toward automated detection of microbleeds with anatomical scale  localization using deep learning

基于深度学习的微出血自动检测及解剖尺度定位

01

文献速递介绍

基于深度学习的脑微出血(CMBs)检测与解剖定位

脑微出血(Cerebral Microbleeds, CMBs)是由血管壁损伤引起的小血液产物的慢性沉积,通常位于动脉和毛细血管附近(Roob et al., 1999; Tajudin et al., 2016)。CMBs常见于老年人及脑血管疾病患者(Werring et al., 2005),尤其是在阿尔茨海默病(AD)、痴呆、缺血性及出血性卒中患者中更为普遍。近年来,研究表明CMBs与认知衰退、脑出血、脑梗死以及短暂性脑缺血发作复发相关(Akoudad et al., 2016; Park et al., 2017)。此外,CMBs被认为是高血压或脑淀粉样血管病(CAA)引起的小血管病理损伤的有价值生物标志物(Gregoire et al., 2009; Vernooij et al., 2008)。

CMBs的病理学意义不仅取决于其存在,还与其解剖学定位(如脑叶区、深部区域、小脑幕下区域)密切相关。例如,脑叶区的CMBs与CAA相关,并与阿尔茨海默病相关(Martinez-Ramirez et al., 2015);深部区域的CMBs与腔隙性脑梗、高血压和舒张压波动相关;小脑幕下区域的CMBs则与收缩压波动和无先兆偏头痛相关(Arkink et al., 2015; Gao et al., 2018; Liu et al., 2012; Renard, 2018)。在认知衰退方面,脑叶区CMBs影响一般认知功能、执行功能、记忆力和处理速度,而深部及小脑幕下CMBs则与心理运动速度和注意力相关(Akoudad et al., 2016)。磁共振成像(Magnetic Resonance Imaging, MRI)是检测CMBs最广泛使用的方式。通过从梯度回波(Gradient-Recalled Echo, GRE)MRI脉冲序列生成的磁敏感加权图像(Susceptibility-Weighted Images, SWI),可以检测直径小至200微米的微小血管出血(Tanaka et al., 1999)。然而,CMBs的检测面临一些挑战。这些圆形或椭圆形病灶尺寸在2至10毫米之间,与整个脑组织相比非常稀疏且微小(Greenberg et al., 2009; Wardlaw et al., 2013)。另一个挑战是SWI图像中存在众多与CMBs具有相似低信号特征的伪影(如钙化和软脑膜血管)。研究表明,钙化可以通过相位图像与CMBs区分开来,因为其在相位图像中的信号强度相反(Yamada et al., 1996)。然而,软脑膜血管在SWI和相位图像中表现为相同的信号强度,因此需要通过多方向(如冠状面和矢状面)的连续切片检查加以区分(Greenberg et al., 2009)。基于这些原因,CMBs的手动检测和解剖学定位过程费时费力且主观性强,而自动检测工具可以作为辅助手段,提升检测效率。已有文献中,深度学习卷积神经网络(CNN)用于CMBs检测主要分为单阶段检测器和双阶段检测器两类。单阶段检测器通过单一深度学习模型直接检测CMBs,其分类模型的性能优于检测模型。然而,由于分类模型只能对输入图像中心目标进行分类,需要多次推断并逐步移动裁剪区域中心,这导致计算成本高且执行时间长。双阶段检测器由两个顺序模型组成:检测模型和分类模型。第一阶段用于筛选潜在候选区域,而第二阶段负责区分真实CMBs与伪影(即减少假阳性)。与单阶段检测器相比,双阶段检测器计算成本较低,因为仅需对第一阶段检测出的候选区域进行分类。此外,在假阳性率方面,双阶段检测器优于单阶段检测器。然而,双阶段检测器无法以端到端方式训练,导致第二阶段的性能受限于第一阶段,尤其是在处理漏检病例时存在不足。本文提出了一种单阶段3D深度学习检测模型,用于自动检测CMBs。我们采用SWI和相位图像作为3D输入,以高效捕获三维信息。本文的主要贡献如下:通过结合3D U-Net和Faster R-CNN的区域提议网络(Region Proposal Network, RPN),构建了一个端到端的3D CMBs检测器(Çiçek et al., 2016; Ren et al., 2015)。在模型中引入了特征融合模块(Feature Fusion Module, FFM),以高效学习上下文信息(Cao et al., 2019, 2018)。

提出了一个无需分类模型的单阶段检测器,通过难样本原型学习(Hard Sample Prototype Learning, HSPL)和卷积原型学习(Convolutional Prototype Learning, CPL)添加了新的损失项“集中损失”,性能优于双阶段检测器(Yang et al., 2018)。此外,我们将最初在MICCAI2022中提出的单阶段检测器扩展为一个框架,不仅能够检测CMBs,还能通过分割脑结构实现解剖学定位(Kim et al., 2022)。本文的新贡献包括:首次开发了解剖学定位任务,可识别CMBs所在的解剖区域(如脑叶、深部和小脑幕下区域),并进一步减少检测中的假阳性。在我们的数据集上,将检测器性能与当前最先进方法进行了比较。本文其余内容结构如下:第二节提供详细的文献综述。第三节详细介绍了所提出的深度学习框架,包括单阶段检测器和解剖学定位工具。第四节展示并讨论了框架的实验结果。最后,第五节总结了本文的结论。

Aastract

摘要

Cerebral Microbleeds (CMBs) are chronic deposits of small blood products in the brain tissues, which have explicit relation to various cerebrovascular diseases depending on their anatomical location, including cognitive decline, intracerebral hemorrhage, and cerebral infarction. However, manual detection of CMBs is a time consuming and error-prone process because of their sparse and tiny structural properties. The detection of CMBs is commonly affected by the presence of many CMB mimics that cause a high false-positive rate (FPR), such as calcifications and pial vessels. This paper proposes a novel 3D deep learning framework that not only detects CMBs but also identifies their anatomical location in the brain (i.e., lobar, deep, and infraten

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值