1. 为什么要有激活函数
若网络中不用激活函数,那么每一层的输出都是输入的线性组合。无论神经网络有多少层,网络的输出都是输入的线性组合,这种网络就是原始的感知机(PerceptronPerceptronPerceptron)。若网络没有激活函数,则每层就相当于矩阵相乘,深层神经网络,无非是多矩阵相乘。
激活函数给神经元引入了非线性因素,使得神经网络可以任意逼近任何非线性函数,这样神经网络就可以应用到众多的非线性模型中。网络使用非线性激活函数后,可以增加神经网络模型的非线性因素,网络可以更加强大,表示输入输出之间非线性的复杂的任意函数映射。
网络的输出层可能会使用线性激活函数,但隐含层一般都是使用非线性激活函数。
2. 非零均值的问题(non-zero-centered)
部分激活函数是非零均值的,如ReLUReLUReLU, SigmoidSigmoidSigmoid等激活函数,他会造成网络收敛很慢。我们可以简单看下表示式:f=(wixi+b)f=(w_{i} x_{i}+b)f=(wixi+b),其中xix_{i}xi为sigmoidsigmoidsigmoid函数的输出。那么,在计算损失函数后,需要进行反向传播更新该权重wiw_{i}wi。这时候,对wiw_{i}wi进行求导,是直接与xix_{i}xi相关的,而因为xix_{i}xi是大于000的值,所以这时候的梯度方向就会完全取决于dLdf\frac{dL}{df}dfdL。这时候若dLdf\frac{dL}{df}dfdL恒正或者恒为负,那么就会出现zig−zaggingzig-zaggingzig−zagging dynamicsdynamicsdynamics的问题,使得网络收敛变慢。
其中zig−zaggingzig-zaggingzig−zagging 的图像就如下面图像:
下面开始我们介绍下常用的激活函数,其中对于部分激活函数,画图都是采用Pytorch中Functional的默认参数来进行绘制的。
1. Sigmoid激活函数
sigmoid函数公式如下:
f(z)=11+exp(−z)f(z)=\frac{1}{1+\exp (-z)} f(z)=1+exp(−z)1
SigmoidSigmoidSigmoid函数也叫LogisticLogisticLogistic函数,用于用于隐层神经元输出,取值范围为(0,1)(0,1)(0,1),它可以将一个实数映射到(0,1)(0,1)(0,1) 的区间,可以用来做二分类或者生成AttentionAttentionAttention $ Mask$。在特征相差比较复杂或是相差不是特别大时效果比较好。
sigmoidsigmoidsigmoid 激活函数的缺点有:
- 激活函数计算量大,反向传播求误差梯度时,求导涉及除法;
- 反向传播时,很容易就会出现梯度消失的情况,从而无法完成深层网络的训练;
- SigmoidSigmoidSigmoid 是非零均值的函数,收敛缓慢。
- SigmoidSigmoidSigmoid函数运算量大。如我们用FLOPsFLOPsFLOPs(每秒浮点操作次数)来衡量模型的计算量指标。则ReLUReLUReLU运算量是1 FLOPsFLOPsFLOPs。那么Sigmoid包括了减、取幂、加、除共4 FLOPsFLOPsFLOPs.
sigmoidsigmoidsigmoid 激活函数出现梯度消失的原因如下:
反向传播算法中,要对激活函数求导,sigmoidsigmoidsigmoid 的导数表达式为:
ϕ′(x)=ϕ(x)(1−ϕ(x))
\phi^{\prime}(x)=\phi(x)(1-\phi(x))
ϕ′(x)=ϕ(x)(1−ϕ(x))
sigmoidsigmoidsigmoid 激活函数原函数及导数图形如下:由图可知,导数从0 开始很快就又趋近于0 了,易造成“梯度消失”现象。
2. TanH激活函数
TanHTanHTanH 激活函数的公式如下,也称为双切正切函数,取值范围为[-1,1]。
tanh(x)=2sigmoid(2x)−1f(z)=tanh(z)=ez−e−zez+e−z
\begin{array}{l}
\tanh (x)=2 \operatorname{sigmoid}(2 x)-1 \\
f(z)=\tanh (z)=\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}
\end{array}
tanh(x)=2sigmoid(2x)−1f(z)=tanh(z)=ez+e−zez−e−z
而TanhTanhTanh函数的反传公式为:
g′(z)=(ez−e−zez+e−z)′=4(ez+e−z)2=1−g(z)2
\begin{aligned}
g^{\prime}(z) &=\left(\frac{e^{z}-e^{-z}}{e^{z}+e^{-z}}\right)^{\prime} \\
&=\frac{4}{\left(e^{z}+e^{-z}\right)^{2}} \\
&=1-g(z)^{2}
\end{aligned}
g′(z)=(ez+e−zez−e−z)′=(ez+e−z)24=1−g(z)2
TanHTanHTanH函数的缺点同sigmoidsigmoidsigmoid函数的缺点类似。当 z 很大或很小时,𝑔′(𝑧) 接近于 0 ,会导致梯度很小,权重更新非常缓慢,即梯度消失问题。从下面的图像也能看出来,靠近图像两端越平缓,梯度越小。
TanHTanHTanH 激活函数函数图像如图所示。
TanhTanhTanh 在特征相差明显时的效果会相对更好,在循环过程中会不断扩大特征效果。与sigmoidsigmoidsigmoid 的区别是,tanhtanhtanh 是000 均值的,因此实际应用中tanhtanhtanh 会比sigmoidsigmoidsigmoid 更好,不过需要具体尝试。
3. ReLU激活函数
ReLUReLUReLU (Rectified Liner Unit)激活函数主要用于隐层神经元输出,公式为f(x)=max(0,x)f(x)=max(0,x)f(x)=max(0,x),函数图像与其求导的导数图像如图所示:
-
ReLUReLUReLU 激活函数的特点是:输入信号小于时,输出都是0,输入信号大于0时,输出等于输入。
-
ReLUReLUReLU 的优点是使用ReLUReLUReLU 得到的SGDSGDSGD 的收敛速度会比使用sigmoid/tanhsigmoid/tanhsigmoid/tanh的SGDSGDSGD 快很多。
-
ReLUReLUReLU 的缺点是神经网络训练的时候很“脆弱”,很容易就会出现神经元死亡。
例如,一个非常大的梯度流过一个ReLUReLUReLU 神经元,更新过参数之后,这个神经元再也不会对任何数据有激活现象了,那么这个神经元的梯度就永远都会是000。(Dead ReLU Problem)。
-
非零均值,所以一般ReLUReLUReLU后会加BNBNBN。
4. Softmax 激活函数
多用于多分类神经网络输出,公式为:
主要用于分类最后归一化到[0,1][0,1][0,1] ,j∈[1,K]j \in [1, K]j∈[1,K]。当然也与SigmoidSigmoidSigmoid一样,可以用在attention之中,学习到权重的矩阵。
5. Softplus激活函数
公式如下:
y=log(1+ex)
y=\log \left(1+e^{x}\right)
y=log(1+ex)
将ReLUReLUReLU与SoftplusSoftplusSoftplus放在一起对比的话,则如图像所示:
可以看到,softplussoftplussoftplus可以看作是ReLUReLUReLU的平滑。其中,加了111是为了保证非负性。SoftplusSoftplusSoftplus可以看作是强制非负校正函数max(0,x)max(0,x)max(0,x)平滑版本。
6. Mish激活函数
MishMishMish函数的公式如下:
Mish =x∗tanh(ln(1+ex))
\text { Mish }=x * \tanh \left(\ln \left(1+e^{x}\right)\right)
Mish =x∗tanh(ln(1+ex))
在PytorchPytorchPytorch中 MishMishMish激活函数代码如下:
x = x * (torch.tanh(F.softplus(x)))
函数图像如图所示:
MishMishMish函数,以上无边界(即正值可以达到任何高度)避免了由于封顶而导致的饱和。理论上对负值的轻微允许允许更好的梯度流,而不是像ReLUReLUReLU中那样的硬零边界。
最后,可能也是最重要的,平滑的激活函数允许更好的信息深入神经网络,从而得到更好的准确性和泛化。
不过我 之前亲自训过MishMishMish这个激活函数,PytorchPytorchPytorch版本的MishMishMish很占显存。
7. Leaky ReLU与PReLU
LeakyLeakyLeaky ReLUReLUReLU的公式如下:
aia_{i}ai是一个(1,+∞)(1,+\infty)(1,+∞)区间内的固定参数。与 ReLUReLUReLU 相比 ,leakyleakyleaky ReLUReLUReLU 给所有负值赋予一个非零斜率aia_{i}ai。这样保留了一些负轴的值,使得负轴的信息不会全部丢失。
而 PReLUPReLUPReLU可以看作是LeakyLeakyLeaky ReLUReLUReLU的一个变体。在PReLUPReLUPReLU中,负值部分的斜率aia_{i}ai是根据网络学习来定的,而非预先定义的。作者称,在ImageNetImageNetImageNet分类(2015,Russakovsky等)上,PReLUPReLUPReLU是超越人类分类水平的关键所在。
如LeakyLeakyLeaky ReLUReLUReLU与PReLUPReLUPReLU主要的特点是:(1)计算简单,有效 (2)比SigmoidSigmoidSigmoid与TanhTanhTanh收敛更快 (3) 解决了DeadDeadDead ReLUReLUReLU的问题。
8. RReLU激活函数
RReLURReLURReLU(Randomized leaky rectified linear unit)也是LeakyLeakyLeaky ReLUReLUReLU的一个变体。在RReLURReLURReLU中,ajia_{ji}aji是一个在一个给定的范围内随机抽取的值,这个值在测试环节就会固定下来
RReLURReLURReLU的亮点在于,在训练环节中,ajia_{ji}aji是从一个均匀的分布U(I,u)U(I,u)U(I,u)中随机抽取的数值。形式上来说,我们能得到以下结果:
where
aji∼U(l,u),l<u,u∈[0,1)
a_{j i} \sim U(l, u), l < u, u \in [0, 1)
aji∼U(l,u),l<u,u∈[0,1)
该函数的图像如下图所示:
9. ELU激活函数
ELUELUELU同样是针对ReLUReLUReLU的负数部分进行的改进,ELUELUELU激活函数对xxx小于零的情况采用类似指数计算的方式进行输出:
ELU(x)=max(0,x)+min(0,α∗(exp(x)−1))
\operatorname{ELU}(x)=\max (0, x)+\min (0, \alpha *(\exp (x)-1))
ELU(x)=max(0,x)+min(0,α∗(exp(x)−1))
或者表达为:
对于ELUELUELU有这些特点:
- ELUELUELU由于其正值特性,可以像ReLUReLUReLU,LeakyLeakyLeaky ReLUReLUReLU, PReLUPReLUPReLU一样缓解梯度消失的问题。
- 相比ReLUReLUReLU,ELUELUELU存在负值,可以将激活单元的输出均值往000推近,达到接近BNBNBN的效果同时减少了计算量。
10. Swish激活函数
激活函数的公式如下:
f(x)=x⋅sigmoid(βx)
f(x)=x \cdot \operatorname{sigmoid}(\beta x)
f(x)=x⋅sigmoid(βx)
其函数图像如下:
其中,β\betaβ是常数或可训练的参数。SwishSwishSwish函数具备无上界有下界、平滑、非单调的特性。通过实验证明,对于深层模型, SwishSwishSwish的效果是优于ReLUReLUReLU的。
当β=0\beta=0β=0时,SwishSwishSwish激活函数成为线性函数f(x)=x2f(x)=\frac{x}{2}f(x)=2x。
当β→∞,σ(x)=(1+exp(−x))−1\beta \rightarrow \infty, \sigma(x)=(1+\exp (-x))^{-1}β→∞,σ(x)=(1+exp(−x))−1 为0或1. Swish变为ReLU: f(x)=2max(0,x)f(x)=2 \max (0, x)f(x)=2max(0,x)。
以SwishSwishSwish函数可以看做是介于线性函数与ReLUReLUReLU函数之间的平滑函数.
11. SELU激活函数
SELUSELUSELU是给ELUELUELU乘上系数 β\betaβ, 即$ SELU(x)=𝜆⋅ELU(x)$。
文章中主要证明是当取得λ≈1.0507,α≈1.6733\lambda \approx 1.0507, \alpha \approx 1.6733λ≈1.0507,α≈1.6733时,在网络权重服从标准正态分布的条件下,各层输出的分布会向标准正态分布靠拢,这种"自我标准化"的特性可以避免梯度消失于梯度爆炸,证明过程各位感兴趣的可以去看看90多页的原文。
函数图像如图所示:
12. GELU激活函数
受启发于DropoutDropoutDropout、ReLUReLUReLU等机制的影响,都意在将不重要的信息设置为0。对于输入的值,我们可以理解成是将输入的值乘以了一个0或者1。即对于每一个输入xxx,其服从于标准正态分布N(0,1)N(0,1)N(0,1),它也会乘以一个伯努利分布Bernoulli(ϕ(x))Bernoulli(\phi(x))Bernoulli(ϕ(x)),其中ϕ(x)=P(x≤x)\phi(x)=P(x \leq x)ϕ(x)=P(x≤x)。
GELUGELUGELU(Gaussian error linear units)的表达式为GELU(x)=xP(X≤x)=xΦ(x)\operatorname{GELU}(x)=x P(X \leq x)=x \Phi(x)GELU(x)=xP(X≤x)=xΦ(x)。
而上式函数是无法直接计算的,因此可以使用另外的方式来进行逼近,论文得到的表达式为:0.5x(1+tanh[2/π(x+0.044715x3)])0.5 x\left(1+\tanh \left[\sqrt{2 / \pi}\left(x+0.044715 x^{3}\right)\right]\right)0.5x(1+tanh[2/π(x+0.044715x3)])。或者为GELU(x)=x1+e−1.702xGELU(x)=\frac{x}{1+e^{-1.702 x}}GELU(x)=1+e−1.702xx。
bertbertbert, TransformerTransformerTransformer中使用的激活函数,作者经过实验证明比relurelurelu等要好。原点可导,不会有DeadDeadDead ReLUReLUReLU问题。
其函数图像如图所示:
大家好,我是灿视。目前是位算法工程师 + 创业者 + 奶爸的时间管理者!
我曾在19,20年联合了各大厂面试官,连续推出两版《百面计算机视觉》,受到了广泛好评,帮助了数百位同学们斩获了BAT等大小厂算法Offer。现在,我们继续出发,持续更新最强算法面经。
我曾经花了4个月,跨专业从双非上岸华五软工硕士,也从不会编程到进入到百度与腾讯实习。
欢迎加我私信,点赞朋友圈,参加朋友圈抽奖活动。如果你想加入<百面计算机视觉交流群>,也可以私我。