【信息论】互信息I(X;Y)中H(X)怎么推导出来——p(x)怎么变成p(x,y)

本文从公式和实际含义两个角度详细解释了在互信息I(X;Y)的推导过程中,如何将-H(X)转换为-∑x∑yp(x,y)log2p(x)。通过假设模型和实际场景举例,阐述了熵H(X)与条件熵H(X|Y)的关系,帮助理解信息论中的这一重要概念。" 108875591,1502959,Aviator表达式在数据过滤中的注意事项与异常处理,"['aviator', '数据处理', '正则表达式', '数据过滤', 'Java']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题

在研究互信息I(X;Y)时,存在:
I ( X ; Y ) = H ( X ) − H ( X ∣ Y ) I(X;Y)=H(X)-H(X|Y) I(X;Y)=H(X)H(XY)
推导过程为:
H ( X ) = − ∑ x p ( x ) l o g 2 p ( x ) H(X) = -\sum_{x}{p(x)log_2{p(x)}} H(X)=xp(x)log2p(x)
H ( X ∣ Y ) = − ∑ x ∑ y p ( x , y ) l o g 2 p ( x ∣ y ) H(X|Y) = -\sum_{x}\sum_{y}{p(x,y)log_2{p(x|y)}} H(XY)=xyp(x,y)log2p(xy)
H ( X ) − H ( X ∣ Y ) = − ∑ x p ( x ) l o g 2 p ( x ) + ∑ x ∑ y p ( x , y ) l o g 2 p ( x ∣ y ) = − ∑ x ∑ y p ( x , y ) l o g 2 p ( x ) + ∑ x ∑ y p ( x , y ) l o g 2 p ( x ∣ y ) = − ∑ x ∑ y p ( x , y ) ( l o g 2 p ( x ) − l o g 2 p ( x ∣ y ) ) = ∑ x ∑ y p ( x , y ) ( l o g 2 p ( x ∣ y ) − l o g 2 p ( x ) ) = ∑ x ∑ y p ( x , y ) l o g 2 p ( x ∣ y ) p ( x ) = ∑ x ∑ y p ( x , y ) l o g 2 p ( x , y ) p ( x ) p ( y ) = I ( X ; Y ) H(X) -H(X|Y) =-\sum_{x}{p(x)log_2{p(x)}}+\sum_{x}\sum_{y}{p(x,y)log_2{p(x|y)}} \\ =-\sum_{x}\sum_{y}{p(x,y)log_2{p(x)}}+\sum_{x}\sum_{y}{p(x,y)log_2{p(x|y)}} \\ =-\sum_{x}\sum_{y}{p(x,y)(log_2{p(x)}-log_2{p(x|y)}}) \\ =\sum_{x}\sum_{y}{p(x,y)(log_2{p(x|y)}}-log_2{p(x)}) \\ =\sum_{x}\sum_{y}{p(x,y)log_{2}}\frac{p(x|y)}{p(x)} \\ =\sum_{x}\sum_{y}{p(x,y)log_{2}}\frac{p(x,y)}{p(x)p(y)} \\ =I(X;Y) H(X)H(XY)=xp(x)log2p(x)+xyp(x,y)log2p(xy)=xy

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值