问题
在研究互信息I(X;Y)时,存在:
I ( X ; Y ) = H ( X ) − H ( X ∣ Y ) I(X;Y)=H(X)-H(X|Y) I(X;Y)=H(X)−H(X∣Y)
推导过程为:
H ( X ) = − ∑ x p ( x ) l o g 2 p ( x ) H(X) = -\sum_{x}{p(x)log_2{p(x)}} H(X)=−x∑p(x)log2p(x)
H ( X ∣ Y ) = − ∑ x ∑ y p ( x , y ) l o g 2 p ( x ∣ y ) H(X|Y) = -\sum_{x}\sum_{y}{p(x,y)log_2{p(x|y)}} H(X∣Y)=−x∑y∑p(x,y)log2p(x∣y)
H ( X ) − H ( X ∣ Y ) = − ∑ x p ( x ) l o g 2 p ( x ) + ∑ x ∑ y p ( x , y ) l o g 2 p ( x ∣ y ) = − ∑ x ∑ y p ( x , y ) l o g 2 p ( x ) + ∑ x ∑ y p ( x , y ) l o g 2 p ( x ∣ y ) = − ∑ x ∑ y p ( x , y ) ( l o g 2 p ( x ) − l o g 2 p ( x ∣ y ) ) = ∑ x ∑ y p ( x , y ) ( l o g 2 p ( x ∣ y ) − l o g 2 p ( x ) ) = ∑ x ∑ y p ( x , y ) l o g 2 p ( x ∣ y ) p ( x ) = ∑ x ∑ y p ( x , y ) l o g 2 p ( x , y ) p ( x ) p ( y ) = I ( X ; Y ) H(X) -H(X|Y) =-\sum_{x}{p(x)log_2{p(x)}}+\sum_{x}\sum_{y}{p(x,y)log_2{p(x|y)}} \\ =-\sum_{x}\sum_{y}{p(x,y)log_2{p(x)}}+\sum_{x}\sum_{y}{p(x,y)log_2{p(x|y)}} \\ =-\sum_{x}\sum_{y}{p(x,y)(log_2{p(x)}-log_2{p(x|y)}}) \\ =\sum_{x}\sum_{y}{p(x,y)(log_2{p(x|y)}}-log_2{p(x)}) \\ =\sum_{x}\sum_{y}{p(x,y)log_{2}}\frac{p(x|y)}{p(x)} \\ =\sum_{x}\sum_{y}{p(x,y)log_{2}}\frac{p(x,y)}{p(x)p(y)} \\ =I(X;Y) H(X)−H(X∣Y)=−x∑p(x)log2p(x)+x∑y∑p(x,y)log2p(x∣y)=−x∑y∑