【Numerical Optimization】1 Introduction

本文探讨了数值优化领域的核心概念,包括连续与离散优化的区别、有约束与无约束优化的特性,以及全局优化与局部优化的目标。同时,还讨论了确定性优化与随机优化的不同应用场景。基于《Numerical Optimization》一书及复旦大学吴立德教授的课程内容,本文旨在为读者提供深入理解数值优化理论与实践的基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Numerical Optimization的知识点笔记主要基于:

1《Numberical Optimization》Jorge Nocedal    Stephen J.Wright

2 复旦大学吴立德教授 课程视频

2020.02.21书要一直翻的,理论和应用,多提问题看到自己认识的浅薄

2019.02.24说到数值优化,基于不同的层面,可以进行不同的分类:

【连续/离散优化:问题/数据/变量是连续的还是离散的(整数规划)

有约束/无约束优化:有/无约束

全局/局部优化:求全局最优解还是局部

随机/确定优化:模型是否明确/变化】


评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值