数值优化(Numerical Optimization)学习系列-目录

概述

数值优化对于最优化问题提供了一种迭代算法思路,通过迭代逐渐接近最优解,分别对无约束最优化问题和带约束最优化问题进行求解。
该系列教程可以参考的资料有
1. 《Numerical Optimization 2nd》–Jorge Nocedal Stephen J. Wright
2. 《凸优化》–Stephen Boyd
3. 《非线性最优化基础》–Masao Fukushima(林贵华译)
4. 《非线性最优化理论与方法》–王宜举
5. 凸优化在线课程

学习链接

  1. 最优化问题概述
    *介绍最优化问题分类以及求解思路
  2. 线搜索方法
    *基于线搜索方法,包括最速下降、牛顿方法以及步长计算等
  3. 信赖域方法
    *介绍信赖域求解最优化问题的思路
  4. 共轭梯度方法
    *介绍共轭方法的思路
  5. 拟牛顿方法
    *介绍拟牛顿方法,用一阶梯度近似Hessian矩阵方法
  6. 大规模无约束最优化方法
    *大规模无约束问题,LBFGS等
  7. 梯度计算
    *复杂函数梯度近似方法
  8. 无梯度最优化方法
    *不计算梯度情况下,如何进行最优化
  9. 最小二乘问题
    *最优化方法应用,求解最小二乘问题
  10. 非线性方程
    *最优化方法应用,求解非线性方程问题
  11. 有约束最优化问题
    *介绍等式、非等式约束最优化问题以及最优化条件,包括KKT条件、对偶等
  12. 线性规划问题
    *线性规划常见求解算法
  13. 非线性约束最优化问题
    *介绍非线性约束的最优化问题求解思路
  14. 二次规划问题
    *目标函数是二次函数的特殊最优化问题,是SQP、内点等方法的基础
  15. 惩罚和增广拉格朗日方法
    *求解带约束最优化问题常用方法
  16. 序列二次规划和内点法
    *SQP和IP方法对于求解大规模约束最优化问题提供方案

说明

该系列文章是个人学习总结,由于非数学专业和时间关系,可能会有错误和纰漏,欢迎大家批评指正。
另外文章每一行都是个人一字一字敲进去的,转载请注明出处,谢谢。

阅读更多

没有更多推荐了,返回首页