Top 5 Python 数据可视化技术

点击下方卡片,关注“小白玩转Python”公众号

掌握这五种高级可视化图表将使数据可视化变得容易。这些库互为补充,以最大化数据表达。

和弦图 (Chord Diagram)

和弦图创造性地展示了数据点之间复杂的关系。节点围绕一个圆圈排列,通过弧线连接。弧线的长度反映了连接值,其粗细表示关系的重要性。颜色对数据进行分类,使比较变得容易。广泛应用于各个领域,特别是在可视化遗传数据方面。

2700526d0ff9a61a41b1655d97e28b40.jpeg

121c48a2d0d05213ac94fcc424fcdfe7.gif

以下是一个使用 Holoviews & Bokeh 创建显示五个国家之间贸易关系的和弦图的示例。

import holoviews as hv
from holoviews import opts
import pandas as pd
import numpy as np
hv.extension('bokeh')


# Sample matrix representing the export volumes between 5 countries
export_data = np.array([[0, 50, 30, 20, 10],   
                        [10, 0, 40, 30, 20],   
                        [20, 10, 0, 35, 25],   
                        [30, 20, 10, 0, 40],   
                        [25, 15, 30, 20, 0]]) 


labels = ['USA', 'China', 'Germany', 'Japan', 'India']


# Creating a pandas DataFrame
df = pd.DataFrame(export_data, index=labels, columns=labels)
df = df.stack().reset_index()


df.columns = ['source', 'target', 'value']


# Creating a Chord object
chord = hv.Chord(df)


# Styling the Chord diagram
chord.opts(
    opts.Chord(
        cmap='Category20', edge_cmap='Category20', 
        labels='source', label_text_font_size='10pt',  
        edge_color='source', node_color='index', 
        width=700, height=700 
    )
).select(value=(5, None)) 


# Display the plot
chord

8da33f5cacdfb87b93c2fb43b7b29d51.jpeg

参考链接:

https://holoviews.org/reference/elements/matplotlib/Chord.html

https://github.com/moshi4/pyCirclize

Sunburst Chart

Sunburst Chart 通过清晰展示层次数据,超越了传统的饼图和环图。它使用同心圆,每个圆代表层次中的一级。中心是根,扇形表示节点。每个扇形的大小反映了它的值,直观地理解数据的重要性。在可视化文件系统层次结构、用户导航路径、市场细分和遗传数据方面非常有用。以下是一个使用 Plotly 库创建Sunburst Chart 的示例。

import plotly.express as px
import numpy as np


df = px.data.gapminder().query("year == 2007")


fig = px.sunburst(df, path=['continent', 'country'], 
                  values='pop',
                  color='lifeExp', 
                  hover_data=['iso_alpha'],
                  color_continuous_scale='RdBu',
                  color_continuous_midpoint=np.average(df['lifeExp'], weights=df['pop']))
fig.show()

8ab0b4d4bfc561e0836b404a0d3b730f.jpeg

参考链接:

https://plotly.com/python/sunburst-charts/

六边形分箱图 (Hexbin Plot)

297b699e7ec3092e2aeaa8b9e881dfc5.jpeg

六边形分箱图,或称六边形分箱,对于可视化二维数据分布非常有效,特别是当数据点密集时。它将数据空间划分为六边形箱,颜色表示每个箱中的点数,清晰地表示数据分布。

以下是一个使用 Python 和 Matplotlib 创建六边形分箱图的示例,展示了空气质量指数 (AQI) 与医院访问之间的相关性。

import numpy as np
import matplotlib.pyplot as plt
from mplhexbin import HexBin


# Simulated data
np.random.seed(0)  # Ensure reproducibility
n_points = 10000
x = np.random.rand(n_points) * 100  # Air Quality Index (AQI) range from 0 to 100
y = 5 * np.sin(x * np.pi / 50) + np.random.randn(n_points) * 15  # Simulated hospital visits, related to AQI but with noise


# Create a new figure
fig, ax = plt.subplots(figsize=(10, 8))


# Use HexBin to create a hexagonal bin plot
hb = HexBin(ax, gridsize=20, cmap='viridis', extent=[0, 100, -30, 50])  # Set grid size, colormap, and range
hb.hexbin(x, y, mincnt=1)  # Draw the hexagonal bin plot, mincnt sets the minimum count threshold


# Add title and axis labels
ax.set_title('Relationship between Air Quality Index (AQI) and Hospital Visits')
ax.set_xlabel('Air Quality Index (AQI)')
ax.set_ylabel('Hospital Visits')


# Show the figure
plt.colorbar(hb.cmap, ax=ax, label='Number of Data Points')  # Add color bar and set label
plt.show()

48f4b60dec3c03163e28307ecb442c43.jpeg

参考链接:

https://matplotlib.org/stable/gallery/statistics/hexbin_demo.html

桑基图 (Sankey Diagram)

桑基图可视化数据流,非常适合能源、材料和财务数据。以 Matthew Henry Phineas Riall Sankey 命名,它显示了系统各阶段或部分之间的流量。节点宽度与流量数量成比例,易于理解数据规模和方向。

1ec60a768a3930c00b0ed6cebdf7bb5f.jpeg

以下是一个使用 Python 创建桑基图的示例,展示了从生产源头到小城市消费者的能量流。

import plotly.graph_objects as go


labels = ["Coal", "Solar", "Wind", "Nuclear", "Residential", "Industrial", "Commercial"]


source = [0, 1, 2, 3, 0, 1, 2, 3] 
target = [4, 4, 4, 4, 5, 5, 5, 5] 
value = [25, 10, 40, 20, 30, 15, 25, 35] 


# Create the Sankey diagram object
fig = go.Figure(data=[go.Sankey(
    node=dict(
        pad=15,  
        thickness=20, 
        line=dict(color="black", width=0.5),
        label=labels 
    ),
    link=dict(
        source=source,  
        target=target, 
        value=value  
    ))])


fig.update_layout(title_text="Energy Flow in Model City", font_size=12)
fig.show()

7a7aa16c3b9ce57e09e77402ab16c2fc.jpeg

参考链接:

https://plotly.com/python/sankey-diagram/

流图 (Stream Graph, 主题河流)

流图类似于河流,描绘了随时间的变化。颜色区分类别,而“河流”的宽度表示每个类别的值。它直观地展示趋势和关系,易于理解数据动态。

a5f8612b109ef757b6741c1077e2fa62.jpeg

以下是一个使用 Altair 库创建流图的示例。

import altair as alt
from vega_datasets import data


source = data.unemployment_across_industries.url


alt.Chart(source).mark_area().encode(
    alt.X('yearmonth(date):T',
        axis=alt.Axis(format='%Y', domain=False, tickSize=0)
    ),
    alt.Y('sum(count):Q', stack='center', axis=None),
    alt.Color('series:N',
        scale=alt.Scale(scheme='category20b')
    )
).interactive()

765d696ab2376bf8ea725df104d314d7.jpeg

参考链接:

https://altair-viz.github.io/gallery/streamgraph.html

·  END  ·

🌟 想要变身计算机视觉小能手?快来「小白玩转Python」公众号!

回复Python视觉实战项目,解锁31个超有趣的视觉项目大礼包!🎁

7881ba83178530445a78c1cd1f72aa9c.png

本文仅供学习交流使用,如有侵权请联系作者删除

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值