GAN

传统的GAN步骤:

这里写图片描述

目标:

把DNN“倒过来用”。之前的DNN可能是输入一幅图像,输出一个标签(比如说猫),那我们能不能输入“猫”这个字,输出一张猫的照片呢?

 

组成:

GAN中包含两种类型的网络G和D 。其中,G为Generator,它的作用是生成图片,也就是说,在输入一个随机编码(random code)z之后,它将输出一幅由神经网络自动生成的、假的图片G(z) 。

另外一个网络D ,为Discriminator是用来判断的,它接受G输出的图像作为输入,然后判断这幅图像的真假,真的输出1,假的输出0。
这里写图片描述

不断的生成,判别,进行迭代

公式:

 

缺点:

1. 没有**用户控制(user control)**能力

在传统的GAN里,输入一个随机噪声,就会输出一幅随机图像。
这里写图片描述
但用户是有想法滴,我们想输出的图像是我们想要的那种图像,和我们的输入是对应的、有关联的。比如输入一只喵的草图,输出同一形态的喵的真实图片(这里对形态的要求就是一种用户控制)。
这里写图片描述

2. 低分辨率(Low resolution)和低质量(Low quality)问题

尽管生成的图片看起来很不错,但如果你放大看,就会发现细节相当模糊
这里写图片描述

 

因此:

 

pix2pix:针对现实生活中有对应真实照片的数据,易获取成对的数据

CycleGAN:针对现实生活中没有对应真实照片的数据  ,不易获取成对的数据

(ps:我们想把图片中的马变成斑马,我们没有成对样本)

这里写图片描述

 

pix2pixHD:生成高分辨率图像

 

 

细节:

pix2pix

pix2pix对传统的GAN做了个小改动,它不再输入随机噪声,而是输入用户给的图片:

这里写图片描述

但这也就产生了新的问题:我们怎样建立输入和输出的对应关系。此时GGG的输出如果是下面这样,DDD会判断是真图:
这里写图片描述
但如果GGG的输出是下面这样的,DDD拿来一看,也会认为是真的图片QAQ…也就是说,这样做并不能训练出输入和输出对应的网络GGG,因为是否对应根本不影响DDD的判断。
这里写图片描述

为了体现这种对应关系,解决方案也很简单,你可以也已经想到了:我们把**GGG的输入和输出一起作为DDD的输入**不就好了?于是现在的优化目标变成了这样:
这里写图片描述

这项研究还是挺成功的,大家可以去这里在线体验一下demo,把草图(sketch)变成图片。

这里写图片描述

当然,有些比较皮的用户输入了奇形怪状的草图,然后画风就变成了这样:
这里写图片描述

应用

pix2pix的核心是有了对应关系,这种网络的应用范围还是比较广泛的,比如:

  1. 草图变图片[Isola, Zhu, Zhou, Efros, 2016]:
    这里写图片描述
  2. 灰度图变彩色图[Isola, Zhu, Zhou, Efros, 2016]:
    这里写图片描述
  3. 自动着色 Data from [Russakovsky et al. 2015]:
    这里写图片描述
  4. 交互式着色[Zhang*, Zhu*, Isola, Geng, Lin, Yu, Efros, 2017]:
    这里写图片描述

CycleGAN

pix2pix必须使用成对的数据进行训练。
这里写图片描述
但很多情况下成对数据是很难获取到的,比如说,我们想把马变成斑马,现实生活中是不存在对应的真实照片的:
这里写图片描述

现在我们就用Cycle-constraint Adversarial Network也就是CycleGAN解决这个问题。这种网络不需要成对的数据,只需要输入数据的一个集合(比如一堆马的照片)和输出数据的一个集合(比如一堆斑马的照片)就可以了。

这里写图片描述

但是(没错我又要说但是了),直接使用不成对的数据是不奏效的。网络会直接忽略输入,随机产生输出!所以,我们还得对网络增加**限制(constraint)**才行。

那怎么加限制呢?我们来思考一个现实问题。马克吐温认为,如果一把一段话从英文翻译成法文,再从法文翻译回英文,那么你应该得到跟之前原始输入的英文一样的内容。这里也是一样,如果我们把马变成斑马,然后再变回马,那么最后的马和开始输入的马应该是一样的。
这里写图片描述

下面讲一下具体技术细节。除了之前提到的把马变成斑马的网络GGG,我们还需要一个把斑马变回马的网络FFF。
那么,一匹马xxx用GGG变成斑马s=G(x)s = G(x)s=G(x),然后再用FFF把它变回马F(s)F(s)F(s),得到的马和一开始的马应该是一样的,也就是x=F(G(x))x = F(G(x))x=F(G(x))。

这里写图片描述
反过来,斑马变马再变回斑马也要满足要求,注意这一步最好不要省略。虽然理论上只用一个条件是可以的,但是现实实现中,有很多因素,比如计算的准备度,优化的问题,应用中都是把所有约束都加上。比如说a=b=ca=b=ca=b=c,理论上我们只要要求$(a-b)2+(a-c)2=0 ,但现实中我们都是做,但现实中我们都是做,但现实中我们都是做(a-b)2+(a-c)2+(b-c)^2=0$。
这里写图片描述

我们同时优化GGG和FFF,最后就能拿到一个想要的网络GGG。

CycleGAN为什么有效

CycleGAN成功的原因在于它分离了风格(Style)内容(content)。人工设计这种分离的算法是很难的,但有了神经网络,我们很容易让它学习者去自动保持内容而改变风格

效果展示

下面是效果展示环节~

马变斑马

两张图片分别是原来的马和GGG duang的一下变出的斑马:
这里写图片描述
这里写图片描述

橘子变苹果:

这里写图片描述
这里写图片描述

可以看到,CycleGAN能够比较准确的找到橘子的位置,并把它变成苹果。

图像风格的迁移:

这里写图片描述

这里写图片描述

游戏场景替换

这个应用就很酷了,它以一些德国城市的照片作为输入,成功替换了游戏GTA5中的场景!
这里写图片描述
这里写图片描述

失败例子

在输入骑马的普京大帝照片时,输出图像里把普京也变成了斑马。
这里写图片描述

这是因为,训练图像里并没有骑马的人,所以网络就傻掉了。

目前暂且的解决办法是先用Mask R-CNN做图像分割之后再针对马进行变化,不过这个效果也不好,因为人和马在图像上有重叠的部分。这个问题需要未来解决。

源代码

这里给出CycleGAN和pix2pix的github项目

这是2017年github最受欢迎的项目之一,截止到本文写作时间(2018年9月),已经有5000+ Star了:
这里写图片描述

课程

CycleGAN现在非常火,以致于很多大学和在线平台都开设了它的课程:
这里写图片描述

用户的结果

下面是这些课程里的一些学生作业:
这里写图片描述
Twitter上也有一些很有趣的应用,比如把狗变成猫@itok_msi:
这里写图片描述
或者把猫变成狗:
这里写图片描述

再比如“吃鸡”游戏的风格转换@Cahintan Trivedi:
这里写图片描述
这里写图片描述
不过这里存在一个严重的问题:CycleGAN只能输出256p/512p的低分辨率图像

pix2pixHD

是的,我们还剩一个悬而未决的问题:分辨率和图像质量。pix2pixHD就是用来解决这个问题的!

假设我们输入一张高分辨率的草图:
这里写图片描述
使用pix2pix,结果很差(之前说过,让网络产生高维数据输出很难):
这里写图片描述

pix2pixHD采取了金字塔式的方法:

  1. 先输出低分辨率的图片。
  2. 将之前输出的低分辨率图片作为另一个网络的输入,然后生成分辨率更高的图片。
    这里写图片描述

这样,就把一个困难的问题拆分成了两个相对简单的问题~

最终的效果是,给定下面的高分辨率草图:
这里写图片描述
pix2pixHD可以**实时(real time)**产生这样的效果:
这里写图片描述

pix2pixHD也支持用户交互,比如加一辆车、添几棵树之类的:
这里写图片描述
这里写图片描述

pix2pixHD还有许多有趣的应用。

比如用草图生成高分辨率人脸:
这里写图片描述
这里写图片描述

 

 

             

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值