numpy之创建数组

本文介绍了使用NumPy库创建数组的各种方法,包括np.array、np.arange、np.ones、np.zeros、np.eye以及np.diag等函数,详细展示了它们的用法和参数含义,帮助理解如何在Python中生成不同类型的数组。
摘要由CSDN通过智能技术生成

numpy之创建数组

方法1:基本方法:np.array
方法2:使用函数创建特殊数组
主要介绍一下方法2
np.arange
np.ones, np.ones_like
np.zeros, np.zeros_like
np.empty, np.empty_like
np.eye, np.identity
np.diag
np.linspace
np.logspace

import numpy as np
#1
np.arange(4)
#array([0, 1, 2, 3])
#一维数组

#2
np.ones((2,4))
#array([[1., 1., 1., 1.],
   [1., 1., 1., 1.]])
#需要使用元组作为参数,元组第一个数“2”:有2行;元组第二个数“4”:有4列。

#3
da = np.identity(4)
#array([[1., 0., 0., 0.],
   [0., 1., 0., 0.],
   [0., 0., 1., 0.],
   [0., 0., 0., 1.]])
np.ones_like(da)
#array([[1., 1., 1., 1.],
   [1., 1., 1., 1.],
   [1., 1., 1., 1.],
   [1., 1., 1., 1.]])

#4
np.eye(4,k=1)
#和np.identity功能一致,k是指对角线位置
#array([[0., 1., 0., 0.],
   [0., 0., 1., 0.],
   [0., 0., 0., 1.],
   [0., 0., 0., 0.]])

#5
np.diag([1,2,3,4],k=1)
#参数使用列表,指定对角线内容,k是指对角线位置
#array([[0, 1, 0, 0, 0],
   [0, 0, 2, 0, 0],
   [0, 0, 0, 3, 0],
   [0, 0, 0, 0, 4],
   [0, 0, 0, 0, 0]])

#6
np.linspace(1,10,5)
#参数中有endpoint=True,改成false,就不包含10了
#功能:1到10之间取5个尽量大的等差数列,
#array([ 1.  ,  3.25,  5.5 ,  7.75, 10.  ])
np.linspace(1,10,5,endpoint = False)
#array([1. , 2.8, 4.6, 6.4, 8.2])

#7
np.logspace(1,2,3)
#对数尺度上进行均匀分布3份
#array([ 10.       ,  31.6227766, 100.       ])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值