直播 | 基于深度增强学习的量化交易机器人:从AlphaGo到FinRL的演变过程

本期领读计划特邀AI4Finance合伙人BruceYang介绍FinRL库,帮助初学者基于深度强化学习开发交易策略。FinRL提供从环境配置选择到模型训练及模拟交易的端到端解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

↑↑↑↑↑点击上方蓝色字关注我们!




『运筹OR帷幄』原创

作者:陆彬

#领读计划#简介

考虑到『运筹OR帷幄』和其他算法类公众号和网络平台中有很多原创文章和优质内容没有得到充分讨论,『运筹OR帷幄算法社区』知识星球特开展 #领读计划#,每月一次由“领读人”带队 经典或热门话题|教学视频|原创技术推文|Paper 等线上Meetup小组学习,组织大家对感兴趣的话题开展深度讨论,结识志同道合的“队友“。

与【运筹OR帷幄】OR Talk系列的最大区别:小规模,开麦自由交流,以及深度探讨!

深度强化学习(DRL)被公认为量化投资中的有效方法,量化交易的初学者有兴趣获得上手操作的经验。训练实用的DRL交易agent,决定交易仓位,交易价格和交易数量,可能面临很陡的学习曲线,也可能需要很有挑战性的开发,调参和测试。本期#领读计划#,特邀 AI4Finance合伙人 Bruce Yang,为大家介绍一个名为FinRL的库,帮助初学者基于DRL开发交易策略。FinRL基于完整性、易上手和可重复三个原则为初学者获得实战经验铺平道路。用户可以根据交易场景例如股票交易、资产配置、高频交易或者比特币交易从FinRL中选取环境配置,然后调取最先进的DRL算法进行模型训练和模拟交易。FinRL提供端到端的解决方案。

注:本次分享中不单单只是讲解,更有Jupyter Notebook实操展示环节。

202102 第十期 #领读计划# 活动流程

1,分享话题:基于深度增强学习的量化交易机器人:从AlphaGo到FinRL的演变过程

2,领读人:Bruce Yang,美国哥伦比亚大学 数据科学方向 master毕业,6年数据科学工作经验,曾在华尔街投行就职,现任AI4Finance合伙人。

3,时间:2月28日(周日) 北京时间 20:00

4,地点:腾讯会议 (可在直播时开麦语音交流),哔哩哔哩直播间(转播)。

知识星球成员

『运筹OR帷幄数据&算法社区』知识星球成员,将在直播前一小时内于星球内第一时间获取腾讯会议房间号;

非知识星球成员

非知识星球会员可观看B站转播。关注【运筹OR帷幄】公众号,后台回复 “领读计划” 获取直播链接。

哔哩哔哩(转播链接):

https://live.bilibili.com/21459168

5,参考文链接:(后台回复“202102”可获得本期分享材料pdf版)

1. https://arxiv.org/abs/1811.07522

2. https://arxiv.org/abs/2011.09607

6,分享提纲:

1. 介绍从AlphaGo到FinRL的发展历史

-介绍AlphaGo → AlphaGo Zero → AlphaZero → MuZero的演变,以及近期在生物工程上取得的重大成就

-介绍FinRL的演变历史

2. 用深度增强学习做股票交易的例子

-以股票交易作为例子教学,如何把交易问题映射到增强学习里

-股票交易的环境设置

-股票交易的实验设置

-股票交易的表现

-股票交易的总结

3. 基于深度增强学习的股票交易框架

-FinRL的初衷

-FinRL的发展计划

-FinRL的贡献

-FinRL的框架结构

-FinRL的交易表现

7,活动须知周日(2月28日)20点00分前会在知识星球内发帖提醒,大家可以调试网络环境进入语音室,并做自我介绍。领读人先讲解领读材料或对领读话题发表自己见解(20-30分钟),后续就话题或更general的topic自由交流(开放麦克权限)

注:时间节点若有变化,会在知识星球内及时更新(公众号暂无法做到及时同步)

#领读计划#往期活动

第一期:领读回顾 NO.1 | 在线学习(MAB)与强化学习(RL)

第二期:领读回顾 NO.2 | 整数规划和优化求解器及其在业界应用

第三期:领读回顾 NO.3 | 从小白到算法工程师--一位中科院土木博士的自述

第四期:领读回顾 NO.4 | 计算智能国际顶级期刊编委"网红丁"教授:数据驱动的最优急救系统设计

第五期:领读回顾 NO.5 | 香港中文大学(深圳)博后邀你来谈谈工科生如何学好数学

第六期:领读回顾 NO.6 | MIT博士邀你来聊聊非稳态多臂老虎机及其在运营管理当中的运用

第七期:领读回顾 NO.7 | 强化学习在共享经济(匹配平台)中的应用和进展

第八期:领读回顾 NO.8 | 人工智能“炼丹妙法”--神经网络结构优化及其在脉冲神经网络中的应用

第九期:领读回顾 NO.9 | 普林斯顿博士邀你聊聊在线强化学习中的样本复杂性问题

往期领读计划直播截图

知识星球另一重磅活动

#OR会客厅#往期内容

『运筹OR帷幄数据&算法社区』知识星球开展的 #OR会客厅#,每月一次(与#领读计划#交替)邀请业界、学界大咖,亦或是“平易近人”的学长学姐,与大家分享  学习或职业经历|留学申请经验|考研考博经验|发表Paper经验 ,组织大家一起“复刻”嘉宾的人生轨迹。

与【运筹OR帷幄】其他线上直播系列的最大区别:(尽量)不聊学术,(尽量)不谈技术,只谈个人经历和人生经验,开麦语音交流!

第一期:OR会客厅回顾 NO.1 | 『运筹OR帷幄的前世今生』如何从0到1运营一个50w+的技术社区

本文责编

欢迎社会各界加入『运筹OR帷幄』算法知识星球!

随着算法相关专业热度的提升,考研读博、留学申请、求职的难度也在相应飙升,『运筹OR帷幄』建立了【算法社区】知识星球,涵盖运筹学、数据科学、人工智能、管理科学、工业工程等相关专业,集结社区60W+专业受众的力量,提供给大家一个共同的学习交流平台,结交志同道合的伙伴。

# 加入知识星球,您将收获以下福利 #

● 依托『运筹OR帷幄』60w+专业受众和60+细分领域硕博微信群的算法技术交流

● 与全球Top名校教授|博士和名企研发高管一起交流算法相关技术干货

● 海量学界|业界(独家内推)招聘|实习机会发布,申请|求职面试经验交流

● 数学模型|算法|论文|学习资料分享与提问,倡导同行交流,寻找志同道合的“队友”

● 鼓励大家分享和互动,每月开展一次“人气话题”和“人气回答”评选,百元红包奖励

● 每月“领读人”带队Paper|教学视频|原创技术推文等线上Meetup小组学习

● 嘉宾每月做客“OR会客厅”,分享学习|留学申请|考研考博|发表Paper|职业发展经验

● 每月一次『行业InTalk』,与业界大佬直播交流行业背后的数据和算法业务逻辑

● 享受『运筹OR帷幄』各大城市线下Meetup免费入场资格,拓展人脉

● leetcode刷题小组、解读经典教材、带打天池/Kaggle/DataCastle等数据科学竞赛等项目陆续开发中...

—— 完 ——


文章须知

文章作者:陆彬

责任编辑:陆彬

审核编辑:阿春

微信编辑:玖蓁

本文由『运筹OR帷幄』原创发布

如需转载请在公众号后台获取转载须知

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值