Github万星,开源强化学习交易框架

FinRL:专为金融打造的DRL框架

FinRL 是一个开源的深度强化学习库,专为量化金融设计,旨在帮助用户开发自动化、智能化的股票交易策略。与其他通用DRL框架不同,FinRL 充分考虑了金融市场的独特性,提供了多种专为金融交易优化的功能和工具。


FinRL 的核心优势
1. 三层架构:数据、环境、代理的无缝集成

FinRL 采用了一种创新的三层架构设计,确保了数据处理、环境模拟和代理训练的无缝集成:

  • 数据层:FinRL 提供了多种数据接口,支持从Yahoo Finance、Alpaca、JoinQuant等多个数据源获取金融数据。用户可以轻松地接入历史和实时数据,并进行清洗和特征工程。这一层的设计极大地简化了数据处理流程,让用户能够专注于策略开发。

  • 环境层:基于OpenAI Gym框架,FinRL 模拟了真实的股票市场环境。它不仅提供了多种市场数据集(如NASDAQ-100、DJIA、S&P 500等),还考虑了交易成本、市场流动性、投资者风险偏好等关键因素。这种高保真度的市场模拟环境,使得训练出的交易策略更具现实意义。

  • 代理层:FinRL 集成了多种先进的DRL算法,包括DQN、DDPG、PPO、SAC、A2C、TD3等。这些算法经过金融交易场景的优化,能够更好地处理高维度和连续动作空间的问题。此外,FinRL 还支持用户自定义算法,满足不同用户的需求。

2. 模块化设计:灵活且可扩展

FinRL 的模块化设计是其一大亮点。每个模块都可以单独使用或替换,用户可以根据自己的需求,定制化整个交易系统。例如:

  • 数据预处理模块:用户可以自定义数据清洗和特征工程流程。

  • 环境模块:用户可以创建新的市场环境,模拟不同的市场条件。

  • 代理模块:用户可以设计和实现新的DRL算法,或对现有算法进行改进。

这种灵活性使得FinRL 不仅适合初学者,也能满足专业投资者的需求。

数据模块代码样例:

from finrl.config import config  
from finrl.preprocessing.preprocessors import FeatureEngineer  
  
# Define the technical indicators and other features  
feature_engineer = FeatureEngineer(  
            use_technical_indicator=True,  
            tech_indicator_list = INDICATORS,  
            use_vix=True,  
            use_turbulence=True,  
            user_defined_feature = False)  
  
processed_df = feature_engineer.preprocess_data(data)  

环境模块代码样例:

from finrl.env.env_stocktrading import StockTradingEnv  
  
# Define the configuration for the trading environment  
env_config = {  
    'stock_dim': len(ticker_list),  
    'hmax': 100,  # maximum number of shares to buy or sell  
    'initial_amount': 100000,  # starting cash  
    'transaction_cost_pct': 0.001,  # transaction cost percentage  
    'reward_scaling': 1e-4  
}  
  
trading_env = StockTradingEnv(df=processed_df, **env_config)

代理模块代码样例:

env_train = env_setup.create_env_training(data = train,  
                                          env_class = StockPortfolioEnv)  
agent = DRLAgent(env = env_train)  
  
now = datetime.datetime.now().strftime('%Y%m%d-%Hh%M')  
a2c_params_tuning = {'n_steps':5,   
     'ent_coef':0.005,   
     'learning_rate':0.0003,  
     'verbose':0,  
     'timesteps':50000}  
model_a2c = agent.train_A2C(model_name = "A2C_{}".format(now), model_params = a2c_params_tuning)  

3. 数据驱动的强化学习流程:公平且高效

FinRL 采用了一个标准的数据处理和训练流程,确保了训练过程的公平性和高效性:

  1. 数据获取和处理:从各种数据源获取金融数据,并进行清洗和特征工程。

  2. 训练和微调:在训练数据集上训练DRL代理,然后在测试数据集上微调参数。

  3. 回测和评估:在历史数据上进行回测,评估策略的表现。

  4. 部署和监控:将训练好的策略部署到真实市场,并进行实时监控和调整。

这种流程不仅保证了信息不会泄露,还提供了一个公平的比较平台,使得不同算法之间的性能评估更加可靠。

4. 多样化的交易任务支持:满足不同需求

FinRL 支持多种交易任务,包括:

  • 单股票交易:专注于一只股票的买卖。

  • 多股票交易:同时交易多只股票。

  • 投资组合分配:管理一个投资组合,决定每只股票的投资比例。

每个任务都有详细的示例代码和教程,用户可以根据自己的需求选择合适的任务进行开发。

5. 强大的回测和评估工具:让策略更可靠

FinRL 提供了强大的回测工具,可以帮助用户在实际交易前,对策略进行全面的评估。它集成了多种性能评估指标,如:

  • 最终投资组合价值:策略执行后的总资产。

  • 年化回报率:策略的年化收益率。

  • 年化标准差:策略的风险度量。

  • 最大回撤率:策略在某个时间段内的最大亏损。

  • 夏普比率:衡量策略的风险调整后收益。

这些指标可以帮助用户全面评估交易策略的表现,确保策略的稳健性和盈利能力。

6. 交易约束和风险控制:贴近现实

FinRL 充分考虑了实际交易中的各种约束和风险因素,如交易成本、市场流动性、投资者风险偏好等。它还集成了金融波动指数等风险控制机制,帮助用户在模拟真实交易环境时更好地控制风险。


FinRL 的应用场景
  1. 自动化交易:通过FinRL,用户可以开发出高效的自动化交易策略,实现24/7不间断交易。

  2. 投资组合管理:FinRL 可以帮助用户优化投资组合分配,提高风险调整后的收益。

  3. 风险控制:通过集成风险控制机制,FinRL 可以帮助用户更好地管理市场风险。

  4. 策略研究:FinRL 提供了丰富的工具和接口,方便用户进行策略研究和开发。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值