numpy数组拼接
# 数组的拼接
x1 = np.arange(0, 12).reshape(2, 6)
x2 = np.arange(0, 12).reshape(2, 6) + 12
# x = np.vstack((x1, x2)) # 垂直拼接方式
x = np.hstack((x1, x2)) # 水平拼接方式
numpy数组行列交换
# 数组行列交换
x[[1, 2], :] = x[[2, 1], :] # 行交换
x[:, [1, 2]] = x[:, [2, 1]] # 列交换
numpy输出数组中最大最小值的位置
# 输出数组中最大最小值的位置
print(np.argmax(x, axis=0)) # 求x数组中每一列的最大值的位置(输出行方向)
print(np.argmax(x, axis=1)) # 求x数组中每一行的最大值的位置(输出列方向)
print(np.argmin(x, axis=0)) # 求x数组中每一列的最小值的位置(输出行方向)
print(np.argmin(x, axis=1)) # 求x数组中每一行的最小值的位置(输出列方向)
numpy生成随机数
# 生成随机数
x = np.random.rand(2, 3) # 创建一个2行3列的数组,其中元素为0-1均匀分布的随机数
x = np.random.randint(10, 20, (2, 3)) # 创建一个2行3列的数组,其中元素为10-20之间均匀分布的随机整数
x = np.random.uniform(10, 20, (2, 3)) # 创建一个2行3列的数组,其中元素为10-20之间均匀分布的随机数
x = np.random.normal(10, 2, (2, 3)) # 创建一个2行3列的数组,其中元素分布中心为10,标准差为20的正态分布
np.random.seed(10) # 生成一个随机数种子,用了之后只要种子一样,产生的随机数也一样;没有这句话就是随机的
numpy中copy和view
尽量别写a=b,a=b[:],因为a和b会相互影响
写a=a就行了
非得写就写a=b.copy()