统计笔记2:Random Variable

离散型随机变量

生成离散型概率分布

np.random.choice(a, size=None, replace=True, p=None)

RandomNumber = np.random.choice([1,2,3,4,5], size=100, replace=True, p=[0.1,0.1,0.3,0.3,0.2])

连续型随机变量

计算概率密度

stats.kde.gaussian_kde()

二项分布Binomial Distribution与伯努利试验Bernoulli Experiment

投100次币,生成20次的伯努利试验

np.random.binomial(100,0.5,20)

求解二项分布的概率质量函数(Probability Mass Function):求100次试验,其中20次正面朝上的概率

stats.binom.pmf(20,100,0.5)

求解二项分布的累积分布函数(Cumulative Distribution Function):求抛100次硬币,正面朝上的次数小于等于20次的概率

第一种方法:求出所有的概率质量函数再累加

dd = binom.pmf(np.arange(0,21,1),100,0.5)
dd.sum()

第二种方法:使用cdf函数

stats.binom.cdf(20,100,0.5)

正态分布Normal Distribution

生成正态分布

Norm = np.random.normal(loc=0.0, scale=1.0, size=5)

参数loc表示正态分布均值;参数scale表示标准差;参数size表示生成随机数的个数

求生成的正态分布的概率密度值

stats.norm.pdf(Norm)

求生成的正态分布的累计密度值

stats.norm.cdf()

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值