离散型随机变量
生成离散型概率分布
np.random.choice(a, size=None, replace=True, p=None)
RandomNumber = np.random.choice([1,2,3,4,5], size=100, replace=True, p=[0.1,0.1,0.3,0.3,0.2])
连续型随机变量
计算概率密度
stats.kde.gaussian_kde()
二项分布Binomial Distribution与伯努利试验Bernoulli Experiment
投100次币,生成20次的伯努利试验
np.random.binomial(100,0.5,20)
求解二项分布的概率质量函数(Probability Mass Function):求100次试验,其中20次正面朝上的概率
stats.binom.pmf(20,100,0.5)
求解二项分布的累积分布函数(Cumulative Distribution Function):求抛100次硬币,正面朝上的次数小于等于20次的概率
第一种方法:求出所有的概率质量函数再累加
dd = binom.pmf(np.arange(0,21,1),100,0.5)
dd.sum()
第二种方法:使用cdf函数
stats.binom.cdf(20,100,0.5)
正态分布Normal Distribution
生成正态分布
Norm = np.random.normal(loc=0.0, scale=1.0, size=5)
参数loc表示正态分布均值;参数scale表示标准差;参数size表示生成随机数的个数
求生成的正态分布的概率密度值
stats.norm.pdf(Norm)
求生成的正态分布的累计密度值
stats.norm.cdf()