根据Debye公式计算海水介电常数及趋肤深度

计算Debye公式及海水趋肤深度

  • 趋肤深度:
    δ = 1 2 k 0 ∣ I m ( ε ) ∣ \delta = \displaystyle\frac{1}{{2{{\rm{k}}_0}\left| {{\mathop{\rm Im}\nolimits} (\sqrt \varepsilon)} \right|}} δ=2k0Im(ε )1
  • Debye公式:
    ε s w = ε s w ∞ + ε s w 0 − ε s w ∞ 1 + ( j 2 π f τ s w ) 1 − α − j σ i 2 π f ε 0 {\varepsilon _{sw}} = {\varepsilon _{sw\infty}} + \displaystyle\frac{{{\varepsilon _{sw0}} - {\varepsilon _{sw\infty }}}}{{1 + {{(j2\pi f{\tau _{sw}})}^{1 - \alpha }}}} - j\displaystyle\frac{{{\sigma _i}}}{{2\pi f{\varepsilon _0}}} εsw=εsw+1+(j2πfτsw)1αεsw0εswj2πfε0σi
    Debye具体计算方法
    python代码:
# -*- coding: utf-8 -*-
"""
Created on Thu Jun  4 21:49:37 2020

@author: deyiwang

计算入射频率为f(GHz)时, 海水介电系数及趋肤深度

海水温度及盐度数据来源:
@article{doi:10.1002/2013JC009716,
author = {Gentemann, Chelle L.},
title = {Three way validation of MODIS and AMSR-E sea surface temperatures},
journal = {Journal of Geophysical Research: Oceans},
volume = {119},
number = {4},
pages = {2583-2598},
keywords = {AMSR-E, MODIS, SST, remote sensing, microwave, infrared},
doi = {10.1002/2013JC009716},
url = {https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013JC009716},
eprint = {https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2013JC009716},
abstract = {Abstract The estimation of retrieval uncertainty and stability are essential for the accurate interpretation of data in scientific research, use in analyses, or numerical models. The primary uncertainty sources of satellite SST retrievals are due to errors in spacecraft navigation, sensor calibration, sensor noise, retrieval algorithms, and incomplete identification of corrupted retrievals. In this study, comparisons to in situ data are utilized to investigate retrieval accuracies of microwave (MW) SSTs from the Advanced Microwave Scanning Radiometer—Earth Observing System (AMSR-E) and infrared (IR) SSTs from the Moderate Resolution Imaging Spectroradiometer (MODIS). The highest quality MODIS data were averaged to 25 km for comparison. The in situ SSTs are used to determine dependencies on environmental parameters, evaluate the identification of erroneous retrievals, and examine biases and standard deviations (STD) for each of the satellite SST data sets. Errors were identified in both the MW and IR SST data sets: (1) at low atmospheric water vapor a posthoc correction added to AMSR-E was incorrectly applied and (2) there is significant cloud contamination of nighttime MODIS retrievals at SST <10°C. A correction is suggested for AMSR-E SSTs that will remove the vapor dependency. For MODIS, once the cloud contaminated data were excluded, errors were reduced but not eliminated. Biases were found to be −0.05°C and −0.13°C and standard deviations to be 0.48°C and 0.58°C for AMSR-E and MODIS, respectively. Using a three-way error analysis, individual standard deviations were determined to be 0.20°C (in situ), 0.28°C (AMSR-E), and 0.38°C (MODIS).},
year = {2014}
}
"""
import math

def eypsilon_1(S,T):
	x = (87.134-0.1949*T-0.01276*T*T+0.002491*T*T*T)*(1+1.613*10**(-5)*T*S-0.003656*S+3.21*10**(-5)*S**2-4.232*10**(-7)*S*S*S)
	return x

def tao(S,T):
    x = (1.768 * 10**(-11)-6.086 * 10**(-13)*T+1.104 * 10**(-14)*T**(2)-8.111 * 10**(-17)*T**(3))*(1.0+2.282 * 10**(-5)*T*S-7.638 * 10**(-4)*S-7.760 * 10**(-6)*S**(2)+1.105 * 10**(-8)*S**(3))
    return x

def sigma(S,T):
    sigma = S*(0.182521-0.00146192*S+2.09324*10**(-5)*S**(2)-1.28205*10**(-7)*S**(3))*math.exp((T-25)*(0.02033+0.0001266*(25-T)+2.464 * 10**(-6)*(25-T)**(2)-S*(1.849 * 10**(-5)-2.551 * 10**(-7)*(25-T)+2.551 * 10**(-8)*(25-T)**(2))))
    return sigma

def varepsilon(S,T,f):
    eypsilon_0 = 8.854*10**(-12)
    omega = 2*math.pi*f*10**(9)
    kk = 0 + 1j
    xy = 4.9 + (eypsilon_1(S,T)-4.9)/(1-(omega*tao(S,T)*kk))-kk*(sigma(S,T))/(omega*eypsilon_0)    
    return xy

def delta(S,T,f):
    omega = 2*math.pi*f*10**(9)
    return (2*omega/299792458*(varepsilon(S,T,f)**(0.5)).imag)**(-1)

if __name__=="__main__":
    f = 5.4
    

    max_i = 12
    min_i = 12   
    max_s = 0
    max_t = 0
    min_s = 0
    min_t = 0
    
    for S in range(30,33):
        for T in range(6,26):
            real = varepsilon(S,T,f).real
            imag = varepsilon(S,T,f).imag
            if imag>max_i:
                max_i = imag
                max_s = S
                max_t = T
            elif imag<min_i:
                min_i = imag
                min_s = S
                min_t = T
    print(max_s,"-",max_t,":",varepsilon(max_s,max_t,f))
    print(min_s,"-",min_t,":",varepsilon(min_s,min_t,f))
#    maxmax = varepsilon(30,25,f)
#    minmin = varepsilon(32,6,f)
    print(delta(max_s,max_t,f))
    print(delta(min_s,min_t,f))
  • [1] T. B. A. Senior, K. Sarabandi, and F. T. Ulaby, “Measuring and modeling the backscattering cross section of a leaf,” Radio Science 22, 1109–1116 (1987).
  • [2] C. L. Gentemann, “Three way validation of modis and amsr-e sea surface temperatures,” Journal of Geophysical Research: Oceans 119(4), 2583–2598 (2014).
  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
德拜-洛伦兹模型是用来描述水分子中复常数的模型。复常数是指物质对场的响应能力,可以用来表示物质内部的极化程度。德拜-洛伦兹模型假设水分子是一个有质点组成的连续质,每个质点上带有正负荷。根据这个模型,水分子的复常数可以通过下列公式计算: ε* = εs + (N/V) * Σ(f1/ε1 + f2/ε2 + ... + fn/εn) 其中,ε*是水的复常数,εs是静态常数,N是水分子的数目,V是体积,f1、f2、...、fn是水分子中每个质点的荷,ε1、ε2、...、εn是水分子中每个质点的常数。 这个模型认为水分子中的荷会根据外加场的方向重新分布,从而产生极化。假设外加场的频率为ω,水分子的质点会以ω频率振动,产生迎合场变化的极化荷。每个质点的振动会随着时间延迟,并发生衰减。 德拜-洛伦兹模型还考虑到水分子的单极矩和极化率的影响,因为这些因素与水分子的形状和内部结构有关。通过求和计算,可以得到水的总的复常数。 总的来说,德拜-洛伦兹模型是一种简化的描述水分子中复常数的方法。它基于水分子中荷重新分布和振动的理论,考虑了质点的荷和常数对水的复常数的贡献。尽管这个模型存在一定的简化和假设,但它仍然可以用来解释水分子中极化现象的一些基本特征。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

deyiwang89

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值