RK3568笔记五十四:SORT实时目标追踪

若该文为原创文章,转载请注明原文出处。

本文主要介绍如何在正点原子的ATK-DLRK3568移植Yolov5+DeepSORT实现多目标检测与跟踪, 并在屏幕上显示。

一、原理介绍

YOLOv5具备目标检测的功能,把视频分解成多幅图像并逐帧执行时,如果视频帧中有多个目标,如何知道一帧中的目标和上一帧是同一个对象就是目标跟踪的工作。

DeepSort是实现目标跟踪的算法,从sort(simple online and realtime tracking)演变而来,使用卡尔曼滤波器预测所检测对象的运动轨迹,匈牙利算法将它们与新的检测目标相匹配。

结合YOLOv5和DeepSORT可以在实时场景中实现高效的目标检测和跟踪

应用案例和最佳实践

行人跟踪计数

YOLOv5-DeepSORT 可以用于行人跟踪计数系统。通过检测和跟踪视频中的行人,系统可以实时统计行人的数量,这对于监控和安全领域非常有用。

车辆跟踪

在交通监控系统中,YOLOv5-DeepSORT 可以用于跟踪车辆,帮助分析交通流量和车辆行为,从而优化交通管理和规划。

最佳实践

数据集准备:确保你的数据集标注准确且覆盖各种场景。
模型训练:根据你的特定需求调整模型参数,进行充分的训练。
性能优化࿱

资源为视频检测算法代码包括算法的模型,算法实现的原理是:首先在视频检测跟踪之前,对所有目标已经完成检测,那么当第一帧进来时,以检测到的目标初始化并创建新的跟踪器,标注ID,输出行人图片,输出一组向量,通过比对两个向量之间的距离,来判断两副输入图片是否是同一个行人。在后面帧进来时,先到卡尔曼滤波器中得到由前面帧box产生的状态预测和协方差预测,并且使用确信度较高的跟踪结果进行预测结果的修正。求跟踪器所有目标状态与本帧检测的box的IOU,通过匈牙利算法寻找二分图的最大匹配,在多目标检测跟踪问题中为寻找前后两帧的若干目标的匹配最优解,得到IOU最大的唯一匹配,在去掉匹配值小于iou_threshold的匹配对。 用本帧中匹配到的目标检测box去更新卡尔曼跟踪器,计算卡尔曼增益,状态更新和协方差更新。并将状态更新值输出,作为本帧的跟踪box,再对于本帧中没有匹配到的目标重新初始化跟踪器。 yolo v3首先通过特征提取网络对输入图像提取特征,得到一定size的feature map,通过尺寸聚类确定anchor box。对每个bounding box网络预测4个坐标偏移。如果feature map某一单元偏移图片左上角坐标,bounding box预选框尺寸为,即anchor尺寸,那么生成对预测坐标为,此为feature map层级.而为真值在feature map上的映射,通过预测偏移使得与一致。类别预测方面为多标签分类,采用多个scale融合的方式做预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

殷忆枫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值