大语言模型2-document ai解读

大语言模型的学习,首先来看简单有效的document.ai

document.ai

https://github.com/GanymedeNil/document.ai

该仓库简洁展示了如何搭建基于本地知识库的对话方案

  • 数据集中的原始文本经过openAI embedding 存储到向量数据库中
  • 针对query,查询的问题转化为向量,搜索数据中的相近的答案topK
  • 以上和普通的对话相同。使用chatgpt,调用openai API,第二部结果转化为prompt进入openai进行完善

本地文件导入向量数据库

def to_embeddings(items):
    sentence_embeddings = openai.Embedding.create(
        model="text-embedding-ada-002",
        input=items[1]
    )
    return [items[0], items[1], sentence_embeddings["data"][0]["embedding"]]


数据实例

  • 常年过敏#####症状包括鼻塞或流鼻涕,鼻、口或喉咙发痒,眼睛流泪、发红、发痒、肿胀,打喷嚏。

主函数

if __name__ == '__main__':
    client = QdrantClient("127.0.0.1", port=6333)
    collection_name = "data_collection"
    openai.api_key = os.getenv("OPENAI_API_KEY")
    # 创建collection
    client.recreate_collection(
        collection_name=collection_name,
        vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
    )

    count = 0
    for root, dirs, files in os.walk("./source_data"):
        for file in tqdm.tqdm(files):
            file_path = os.path.join(root, file)
            with open(file_path, 'r', encoding='utf-8') as f:
                text = f.read()
                parts = text.split('#####')  # 第一部分 病,第二部分 症状
                item = to_embeddings(parts)  # 第一:病,第二:症状,第三:症状的向量
                client.upsert(
                    collection_name=collection_name,
                    wait=True,
                    points=[
                        PointStruct(id=count, vector=item[2], payload={"title": item[0], "text": item[1]}),
                    ],
                )
            count += 1

服务端
Flask

@app.route('/search', methods=['POST'])
def search():
    data = request.get_json()
    search = data['search']

    res = query(search)

    return {
        "code": 200,
        "data": {
            "search": search,
            "answer": res["answer"],
            "tags": res["tags"],
        },
    }

搜索内容进入query函数


def query(text):
    """
    执行逻辑:
    首先使用openai的Embedding API将输入的文本转换为向量
    然后使用Qdrant的search API进行搜索,搜索结果中包含了向量和payload
    payload中包含了title和text,title是疾病的标题,text是摘要
    最后使用openai的ChatCompletion API进行对话生成
    """
    client = QdrantClient("127.0.0.1", port=6333)
    collection_name = "data_collection"
    openai.api_key = os.getenv("OPENAI_API_KEY")
    sentence_embeddings = openai.Embedding.create(
        model="text-embedding-ada-002",
        input=text
    )
    """
    因为提示词的长度有限,所以我只取了搜索结果的前三个,如果想要更多的搜索结果,可以把limit设置为更大的值
    """
    search_result = client.search(
        collection_name=collection_name,
        query_vector=sentence_embeddings["data"][0]["embedding"],
        limit=3,
        search_params={"exact": False, "hnsw_ef": 128}
    )
    answers = []
    tags = []

    """
    因为提示词的长度有限,每个匹配的相关摘要我在这里只取了前300个字符,如果想要更多的相关摘要,可以把这里的300改为更大的值
    """
    for result in search_result:
        if len(result.payload["text"]) > 300:
            summary = result.payload["text"][:300]
        else:
            summary = result.payload["text"]
        answers.append({"title": result.payload["title"], "text": summary})

    completion = openai.ChatCompletion.create(
        temperature=0.7,
        model="gpt-3.5-turbo",
        messages=prompt(text, answers),
    )

    return {
        "answer": completion.choices[0].message.content,
        "tags": tags,
    }

其中,最后使用的prompt是利用openai的关键

def prompt(question, answers):
    """
    生成对话的示例提示语句,格式如下:
    demo_q:
    使用以下段落来回答问题,如果段落内容不相关就返回未查到相关信息:"成人头疼,流鼻涕是感冒还是过敏?"
    1. 普通感冒:您会出现喉咙发痒或喉咙痛,流鼻涕,流清澈的稀鼻涕(液体),有时轻度发热。
    2. 常年过敏:症状包括鼻塞或流鼻涕,鼻、口或喉咙发痒,眼睛流泪、发红、发痒、肿胀,打喷嚏。
    demo_a:
    成人出现头痛和流鼻涕的症状,可能是由于普通感冒或常年过敏引起的。如果病人出现咽喉痛和咳嗽,感冒的可能性比较大;而如果出现口、喉咙发痒、眼睛肿胀等症状,常年过敏的可能性比较大。
    system:
    你是一个医院问诊机器人
    """
    demo_q = '使用以下段落来回答问题:"成人头疼,流鼻涕是感冒还是过敏?"\n1. 普通感冒:您会出现喉咙发痒或喉咙痛,流鼻涕,流清澈的稀鼻涕(液体),有时轻度发热。\n2. 常年过敏:症状包括鼻塞或流鼻涕,鼻、口或喉咙发痒,眼睛流泪、发红、发痒、肿胀,打喷嚏。'
    demo_a = '成人出现头痛和流鼻涕的症状,可能是由于普通感冒或常年过敏引起的。如果病人出现咽喉痛和咳嗽,感冒的可能性比较大;而如果出现口、喉咙发痒、眼睛肿胀等症状,常年过敏的可能性比较大。'
    system = '你是一个医院问诊机器人'
    q = '使用以下段落来回答问题,如果段落内容不相关就返回未查到相关信息:"'
    q += question + '"'
    # 带有索引的格式
    for index, answer in enumerate(answers):
        q += str(index + 1) + '. ' + str(answer['title']) + ': ' + str(answer['text']) + '\n'

    """
    system:代表的是你要让GPT生成内容的方向,在这个案例中我要让GPT生成的内容是医院问诊机器人的回答,所以我把system设置为医院问诊机器人
    前面的user和assistant是我自己定义的,代表的是用户和医院问诊机器人的示例对话,主要规范输入和输出格式
    下面的user代表的是实际的提问
    """
    res = [
        {'role': 'system', 'content': system},
        {'role': 'user', 'content': demo_q},
        {'role': 'assistant', 'content': demo_a},
        {'role': 'user', 'content': q},
    ]
    return res

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YueTann

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值