Siamese Regression Networks with Efficient mid-level Feature Extraction for 3D Object Pose Estimatio

这里是论文:

Doumanoglou A, Balntas V, Kouskouridas R, et al. Siamese regression networks with efficient mid-level feature extraction for 3d object pose estimation[J]. arXiv preprint arXiv:1607.02257, 2016.

的个人解读,论文cited:30。

端对端回归,相似性度量

谷歌搜“pose-guided feature learning”第一篇就是他们的:

Balntas V, Doumanoglou A, Sahin C, et al. Pose guided RGBD feature learning for 3D object pose estimation[C]//Proceedings of the IEEE International Conference on Computer Vision. 2017: 3856-3864.

用深度学习直接回归物体角度是困难的。这里“同时学习判别特征”,指,在回归的同时强调学习判别特征,也就是说学到的是为我们这个问题优化的更有判别性的特征,

利用样本间的关系提升网络学习能力,

这里的两篇论文分别是,

利用新的损失函数,增强回归网络的性能,并试验了成功回归的一些其他因素,如特征归一化、batch formation,

这是[25]这篇,

物体大部分被遮挡时,性能下降剧烈,论文的结构修改后还能处理这样的情况,

上面提到的论文如下,

论文用的是深度数据,直接回归欧拉角是有问题的,论文用的是四元数,

这两篇论文如下,

网络结构:

f(x)是特征层输出,g是回归层函数,特征层是网络倒数第二层,回归层是网络最后一层,

孪生结构,用CNN学习非线性特征嵌入,非常成功,

[7]是

结论是,

there is a relation between the feature and the angle space which helps a regression network layer perform much better. The relationship is the following: the euclidean distance between two sample images represented in feature space, should be maintained the same with the distance between the same samples as represented in angle space, during training.

如下图,

训练损失将L2标准化特征空间中的距离与L2标准化姿态空间中的距离联系起来,测试的时候就用网络的一支做回归。特征导向回归的损失函数如下,称为特征损失,并且为了避免任何一部分加权,让特征层和回归层的输出的L2范数为1,这里的extra feature term值的就是这部分的损失函数,

回归损失函数,

总的损失函数就是回归损失和特征损失的和,

这里的最近邻不太理解,

还有一段对最近邻的阐述,

学特征的网络的参数,用两个损失更新,回归层的参数用回归损失更新,

还有一段对[25]的描述,等看完这篇再看看,

https://blog.csdn.net/qq_40245826/article/details/97157066

样本对的采样,姿态要么差别非常大,要么很小,这还能帮助回归,

提到的两篇论文,

实验,

 

处理遮挡的情况,利用标注,渲染干净的物体,增加一项损失,

如图,

使用的其中一个数据集,

实验设置,

就先写到这里吧。

 

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值