1.写一个算法模型以及python算法工程化步骤

生成一个 PT(Perceptual Tokenizer)模型的步骤如下:

  1. 准备数据集:首先,你需要准备一个用于训练 PT 模型的数据集。这可以是一个包含大量文本数据的语料库。

  2. 数据预处理:对数据进行预处理以准备训练。这可能包括文本清洗、分词、去除停用词等操作。

  3. 构建词汇表:根据预处理后的数据,构建一个词汇表。词汇表应该包含所有在训练数据中出现的单词,并为每个单词分配一个唯一的标识符。

  4. 构建输入输出对:将训练数据转换为模型的输入输出对。每个输入是一个文本序列,每个输出是该序列中下一个单词的标识符。

  5. 定义模型结构:使用深度学习框架(如TensorFlow或PyTorch)定义 PT 模型的结构。PT 模型通常由嵌入层、循环神经网络(如LSTM或GRU)和全连接层组成。

  6. 编写训练代码:使用选择的深度学习框架编写训练代码。这包括定义损失函数、选择优化器,并编写迭代训练过程。

  7. 训练模型:使用准备好的训练数据和编写好的训练代码来训练 PT 模型。通过多次迭代优化模型参数,使其能够更好地预测下一个单词。

  8. 保存模型:在完成训练后,将最终得到的 PT 模型保存到磁盘上,以便后续使用。

以下是一个简单示例代码,演示了如何使用Python和PyTorch来构建和训练 PT 模型:

import torch
import torch.nn as nn
import torch.optim as optim

# 定义 PT 模型结构
class PerceptualTokenizer(nn.Module):
    def __init__(self, vocab_size, embedding_dim, hidden_dim):
        super(PerceptualTokenizer, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim)
        self.rnn = nn.LSTM(embedding_dim, hidden_dim)
        self.fc = nn.Linear(hidden_dim, vocab_size)

    def forward(self, input):
        embedded = self.embedding(input)
        output, _ = self.rnn(embedded)
        output = self.fc(output)
        return output

# 准备数据集和预处理

# 构建词汇表

# 构建输入输出对

# 定义超参数
vocab_size = len(vocab)  # 假设已经有了vocab列表
embedding_dim = 100
hidden_dim = 256
learning_rate = 0.001
num_epochs = 10

# 创建模型实例
model = PerceptualTokenizer(vocab_size, embedding_dim, hidden_dim)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)

# 开始训练过程
for epoch in range(num_epochs):
    for input, target in training_data:
        optimizer.zero_grad()
        
        # 前向传播计算输出结果
        output = model(input)
        
        # 计算损失函数值并进行反向传播及参数更新
        loss = criterion(output.view(-1, vocab_size), target.view(-1))
        loss.backward()
        optimizer.step()

    print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))

# 保存模型到磁盘上
torch.save(model.state_dict(), 'pt_model.pt')

请注意,以上代码仅为示例,并未完整展示所有步骤和详尽配置。实际应用中可能需要根据具体需求进行适当修改和调整。

Python算法工程化的详细代码步骤,麻烦写出来一定要详细

下面是一个详细的Python算法工程化的代码步骤:

  1. 创建项目目录结构:创建一个新的文件夹作为项目根目录,并在其中创建子文件夹来组织代码、数据和其他资源。

  2. 初始化版本控制:使用Git或其他版本控制系统初始化项目仓库,以便跟踪代码的变化。

  3. 创建虚拟环境:使用虚拟环境工具(如venv或conda)创建一个独立的Python环境,以隔离项目所需的依赖项。

  4. 安装依赖项:在虚拟环境中安装项目所需的所有依赖项。可以使用requirements.txt文件来记录依赖项列表,并使用pip或conda进行安装。

  5. 编写算法代码:在项目根目录下创建一个名为"src"的子文件夹,并在其中编写算法代码。按照模块化原则,将代码分成多个模块或脚本,每个模块负责不同的功能。

  6. 添加单元测试:在"src"目录下创建一个名为"tests"的子文件夹,并编写单元测试代码来验证算法的正确性。可以使用Python内置的unittest模块或第三方库(如pytest)来编写和运行测试。

  7. 添加文档注释:为算法代码中的函数、类和模块添加详细的文档注释。这些注释应该描述函数/类的输入、输出、功能和用法等信息,以方便其他开发人员理解和使用你的代码。

  8. 添加日志记录:使用Python内置logging模块或第三方库(如loguru)添加日志记录功能。通过适当地添加日志语句,可以帮助调试和追踪算法运行时发生的问题。

  9. 编写配置文件:创建一个名为config.py(或其他合适名称)的配置文件,在其中定义算法所需参数和设置。这样可以使得参数可配置化,方便在不同环境中进行调整。

  10. 添加命令行接口(CLI)支持:使用argparse或click等库,在主程序中添加命令行参数解析功能。这样用户可以通过命令行传递参数并运行你的算法。

  11. 编写示例脚本:在项目根目录下创建一个名为"examples"(或其他合适名称)的子文件夹,并编写示例脚本来演示如何使用你实现的算法。这些示例脚本应该包含详细注释以指导用户正确地运行和理解你提供的功能。

  12. 编写README文档:在项目根目录下创建一个名为README.md(或其他合适名称)的Markdown格式文档,用于描述项目背景、安装步骤、用法示例、贡献指南等信息。这是向其他开发人员介绍你项目最重要且常见方式之一。

  13. 构建持续集成/部署流水线(可选):如果需要自动化构建、测试和部署过程,可以配置持续集成/部署工具(如Jenkins、Travis CI或GitHub Actions),以确保每次提交都能自动进行构建和测试。

  14. 发布到版本控制系统:将整个项目提交到版本控制系统,并确保包含所有必要文件(源码、数据、配置等)。这样可以方便团队协作和追溯历史更改记录。

以上是一个完整而详细的Python算法工程化步骤指南。请注意,在实际应用中可能会有一些特定于项目需求和团队规范等因素需要考虑调整。

PyTorch

PyTorch 是一个基于 Python 的开源机器学习框架,它提供了丰富的工具和库,用于构建和训练深度学习模型。PyTorch 的设计目标是提供灵活性和易用性,使得研究人员和开发者能够快速地实现各种深度学习算法。

PyTorch 的主要特点包括:

  1. 动态计算图:PyTorch 使用动态计算图的方式来定义和执行计算图。这意味着在编写代码时可以使用常规的 Python 控制流语句(如循环、条件语句等),从而更加灵活地构建模型。

  2. 强大的自动求导:PyTorch 提供了自动求导功能,可以自动计算张量上的梯度。这使得反向传播算法变得非常简单,可以轻松地进行模型训练和参数优化。

  3. 大量预定义模型和损失函数:PyTorch 提供了丰富的预定义模型架构(如卷积神经网络、循环神经网络等)和损失函数(如交叉熵损失、均方误差等),方便用户快速构建常见的深度学习模型。

  4. 支持 GPU 加速:PyTorch 可以利用 GPU 进行计算加速,通过将张量数据移动到 GPU 上进行并行计算,大幅提高了训练和推理的效率。

  5. 丰富的生态系统:PyTorch 拥有庞大而活跃的社区,提供了许多扩展库和工具,如 torchvision(用于计算机视觉任务)、torchtext(用于文本处理任务)等。这些库可以帮助用户更方便地处理各种数据类型和任务。

由于其易用性、灵活性和强大的功能,PyTorch 在学术界和工业界都得到广泛应用。它被广泛用于深度学习研究、原型开发、生产部署等场景,并成为了当今最受欢迎的深度学习框架之一。

什么是模型量化、蒸馏、剪枝

模型量化(Model Quantization)是指将深度学习模型中的浮点数参数和操作转换为更低精度的表示形式,以减少模型的存储空间和计算量。常见的量化方法包括权重量化和激活量化,可以将浮点数参数转换为8位整数或更低位数的表示形式。

蒸馏(Knowledge Distillation)是一种知识传递技术,通过训练一个较大、复杂的模型(称为教师模型)来指导训练一个较小、简化的模型(称为学生模型)。教师模型可以提供更丰富的知识和预测能力,而学生模型则可以在减少计算资源和存储空间开销的同时保持相对较高的性能。

剪枝(Model Pruning)是一种减少深度学习模型参数数量和计算复杂度的方法。通过删除冗余、不重要或冗余连接等方式,剪枝可以显著减少模型中参数数量,并降低推理时所需的计算量。剪枝方法通常基于权重重要性评估或结构特征进行选择。

这些技术都旨在优化深度学习模型,使其更加轻巧、高效,并适应于资源受限或实时应用场景。它们在实践中被广泛应用,以提高深度学习模型在移动设备、嵌入式系统和边缘设备上的部署效果。

怎么生成一个人脸pt模型,麻烦写一下详细的步骤,并写出详细的代码?

生成人脸的 PT 模型是一个复杂的任务,需要使用深度学习和计算机视觉技术。下面是一个简化的步骤和示例代码,用于生成人脸 PT 模型:

步骤 1: 数据收集
收集大量的人脸图像数据作为训练集。可以使用公开的人脸数据集,如CelebA、LFW等,或者自己收集并标注数据。

步骤 2: 数据预处理
对收集到的人脸图像进行预处理,包括裁剪、缩放、灰度化等操作。确保所有图像具有相同的尺寸和格式。

步骤 3: 构建模型架构
选择适合生成人脸的模型架构,如基于生成对抗网络(GAN)的模型。可以使用深度学习框架如PyTorch来构建模型。

以下是一个简单的示例代码段,用于构建一个基本的生成对抗网络(GAN)模型:

import torch
import torch.nn as nn

# 定义生成器模型
class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        # 定义网络层结构

    def forward(self, x):
        # 前向传播过程

# 定义判别器模型
class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        # 定义网络层结构

    def forward(self, x):
        # 前向传播过程

# 创建生成器和判别器实例
generator = Generator()
discriminator = Discriminator()

# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer_G = torch.optim.Adam(generator.parameters(), lr=0.0002)
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=0.0002)

# 训练模型
for epoch in range(num_epochs):
    for i, (images, _) in enumerate(data_loader):

        # 训练判别器

        # 训练生成器

步骤 4: 模型训练与优化
使用准备好的训练数据对模型进行训练,并通过反向传播算法优化模型参数。在训练过程中,交替地训练生成器和判别器,并根据损失函数进行优化。

步骤 5: 模型评估与调优
评估训练好的模型性能,并根据需要进行调优。可以通过定量指标(如生成图像质量评估)或主观评估来评估结果。

请注意,以上只是一个简单示例,并不能完整涵盖所有实现细节。实际上,生成高质量人脸图像是一个非常复杂且需要大量计算资源和时间的任务。如果你想要更详细和完整的代码实现,请参考相关研究论文或开源项目,并根据具体需求进行调整和扩展。

怎么生成一个pt模型,麻烦写一下详细的步骤?

要生成一个PT模型,您需要执行以下步骤:

  1. 导入PyTorch库:在开始生成模型之前,您需要导入PyTorch库。您可以使用以下代码导入PyTorch:
import torch
  1. 定义模型结构:在PyTorch中,模型是由多个层组成的。您需要定义模型的层结构。例如,您可以定义一个简单的全连接神经网络,如下所示:
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = torch.nn.Linear(in_features=784, out_features=128)
        self.fc2 = torch.nn.Linear(in_features=128, out_features=64)
        self.fc3 = torch.nn.Linear(in_features=64, out_features=10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = torch.nn.functional.relu(self.fc1(x))
        x = torch.nn.functional.relu(self.fc2(x))
        x = self.fc3(x)
        return x
  1. 实例化模型:在定义了模型结构之后,您需要实例化模型并设置参数。例如,您可以使用以下代码实例化上面定义的Net类:
model = Net()
  1. 定义损失函数和优化器:在训练模型之前,您需要定义损失函数和优化器。例如,您可以使用以下代码定义损失函数和优化器:
criterion = torch.nn.CrossEntropyLoss()  # 用于分类问题的损失函数
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)  # 定义优化器,这里使用的是随机梯度下降法,学习率为0.01
  1. 训练模型:在定义了模型、损失函数和优化器之后,您可以使用训练数据集来训练模型。例如,您可以使用以下代码进行训练:
num_epochs = 10  # 训练轮数
for epoch in range(num_epochs):
    for data in dataloader:  # dataloader是加载训练数据集的迭代器
        inputs, labels = data  # 获取输入数据和对应的标签
        inputs, labels = inputs.to(device), labels.to(device)  # 将输入数据和标签移到GPU上
        optimizer.zero_grad()  # 清空之前的梯度信息
        outputs = model(inputs)  # 前向传播,得到输出结果
        loss = criterion(outputs, labels)  # 计算损失函数值
        loss.backward()  # 反向传播,计算梯度信息
        optimizer.step()  # 根据梯度信息更新权重参数

Python算法工程化的详细代码步骤,麻烦写代码出来一定要详细

算法工程化是将算法转化为可重复使用的、可维护的、可扩展的程序的过程。在Python中,实现算法工程化的详细步骤如下:

  1. 确定需求和问题建模:首先需要明确问题的需求和目标,然后使用数学模型或算法来描述和建模这个问题。
  2. 选择合适的算法:基于问题的需求和模型的性质,选择一个适合的算法来解决这个问题。
  3. 实现算法:使用Python编写算法的详细代码,可以通过调试和优化来提高算法的效率和准确性。
  4. 测试算法:使用测试数据来验证算法的正确性和性能,包括边界条件和异常情况。
  5. 优化算法:根据测试结果,对算法进行优化和改进,以提高算法的性能和准确性。
  6. 集成算法:将算法集成到应用程序或系统中,并确保其可重复使用和可维护。
  7. 文档化算法:编写算法的文档,包括算法的输入、输出、性能和注意事项等。

下面是一个简单的例子,展示如何实现一个二分查找算法的工程化过程:

  1. 确定需求和问题建模:二分查找是一种高效的查找算法,适用于有序的数组。它的时间复杂度为O(log n)。我们可以使用数学模型描述二分查找的过程,例如:
def binary_search(arr, target):
    left, right = 0, len(arr) - 1
    while left <= right:
        mid = (left + right) // 2
        if arr[mid] == target:
            return mid
        elif arr[mid] < target:
            left = mid + 1
        else:
            right = mid - 1
    return -1
  1. 选择合适的算法:对于有序的数组,二分查找是一个非常高效的查找算法。
  2. 实现算法:根据数学模型,我们可以使用Python编写二分查找的代码。上面的代码就是一个简单的实现。
  3. 测试算法:我们需要测试算法的正确性和性能。可以使用一些测试数据来进行测试,例如:
arr = [1, 3, 5, 7, 9]
print(binary_search(arr, 3))  # 输出: 1
print(binary_search(arr, -1))  # 输出: -1
  1. 优化算法:根据测试结果,我们可以对算法进行优化和改进。例如,我们可以添加一些异常处理来提高代码的健壮性。
  2. 集成算法:我们可以将二分查找算法集成到更大的应用程序或系统中。例如,我们可以将其作为一个函数提供给其他程序使用。
  3. 文档化算法:我们可以编写文档来描述二分查找算法的输入、输出、性能和注意事项等。例如:二分查找算法接受一个有序的数组和一个目标值作为输入,返回目标值在数组中的索引。如果目标值不在数组中,则返回-1。算法的时间复杂度为O(log n)。

怎么生成一个人脸pt模型,麻烦写一下详细的步骤,并写出详细的代码?

生成一个人脸PT模型需要进行一系列的步骤,包括采集人脸数据、构建模型结构、训练模型等。下面是一个详细的步骤和代码示例:

步骤:

  1. 采集人脸数据:首先需要采集大量的人脸数据,可以使用公共数据集或者自己采集数据。在采集数据时需要注意以下几点:
  • 采集环境的光线要均匀,避免出现阴影和反光;
  • 采集的人脸要正面对着相机,不要侧脸或者低头;
  • 采集的图像分辨率要高,以保证模型的精度。
  1. 预处理人脸数据:对采集的人脸数据进行预处理,包括人脸检测、人脸对齐、人脸归一化等。可以使用现有的开源库,例如dlib和OpenCV等。
  2. 构建模型结构:根据需要选择合适的深度学习模型,例如CNN、RNN、GAN等。在构建模型时需要考虑以下几点:
  • 模型的结构要简单,不要过于复杂,以避免过拟合和欠拟合等问题;
  • 模型的参数要可调,以便在训练过程中不断优化模型参数。
  1. 训练模型:使用采集的人脸数据和预处理后的数据来训练模型。在训练模型时需要考虑以下几点:
  • 训练数据的划分要合理,可以将数据集分为训练集、验证集和测试集;
  • 训练的超参数要合理,例如学习率、批量大小、迭代次数等;
  • 可以使用一些正则化技术来防止过拟合,例如Dropout、L2正则化等。
  1. 测试模型:使用测试集来测试模型的性能和精度。可以使用一些指标来评估模型的性能,例如准确率、召回率、F1分数等。
  2. 优化模型:根据测试结果对模型进行优化和改进。可以尝试不同的优化策略,例如改变网络结构、增加数据集大小等。
  3. 应用模型:将训练好的模型应用到实际场景中,例如人脸识别、人脸比对等。

代码示例:
下面是一个使用PyTorch库实现的人脸PT模型的代码示例:

import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
from facenet_pytorch import MTCNN, InceptionResnetV1

# 人脸检测和对齐
mtcnn = MTCNN()
img = Image.open("face.jpg")
boxes, probs, points = mtcnn.detect(img, landmarks=True)

# 数据预处理
transform = transforms.Compose([transforms.ToTensor()])
img = transform(img)
img = img.unsqueeze(0)  # [batch_size, channels, height, width]

# 构建模型结构
model = InceptionResnetV1(pretrained='vggface2').eval()

# 输入数据到模型中并得到预测结果
with torch.no_grad():
    predictions = model(img)
    _, predicted_idx = torch.max(predictions, 1)

这段代码看起来是一个使用PyTorch和facenet_pytorch库进行人脸识别的程序。下面是代码的简要说明和执行步骤:

  1. 导入必要的库:

    • torch:PyTorch库,用于构建和运行神经网络模型。
    • torch.nn:PyTorch的神经网络模块,用于定义和训练神经网络模型。
    • torchvision.transforms:用于对图像进行预处理和转换。
    • Image:Python Imaging Library (PIL)中的图像处理模块,用于打开、处理和变换图像。
    • MTCNN:facenet_pytorch库中的人脸检测和对齐模型,用于从图像中检测和定位人脸。
    • InceptionResnetV1:facenet_pytorch库中的预训练模型,用于人脸识别。
  2. 使用MTCNN模型进行人脸检测和对齐:

    • 初始化MTCNN模型。
    • 打开名为"face.jpg"的图像文件。
    • 使用MTCNN模型的detect方法检测图像中的人脸,并返回人脸的位置、概率和关键点信息。
  3. 数据预处理:

    • 创建一个数据预处理管道,使用transforms.Compose将图像转换为张量。
    • 对图像进行预处理,将其转换为PyTorch张量。
    • 通过使用unsqueeze方法,将图像张量增加一个维度,以适应模型输入的形状。
  4. 构建模型结构:

    • 使用InceptionResnetV1模型,并加载预训练的’vggface2’权重。
    • 将模型设置为评估模式(eval),以便在推理模式下使用。
  5. 输入数据到模型中并得到预测结果:

    • 使用torch.no_grad()上下文管理器,关闭梯度计算,以减少内存使用和计算负担。
    • 将预处理后的图像数据输入到模型中。
    • 使用torch.max方法获取模型输出的最大值,并返回该最大值的索引作为预测的类别。

要执行此代码,您需要满足以下条件:

  1. 安装PyTorch库:您可以通过pip或conda等包管理工具安装PyTorch。例如,使用pip安装:pip install torch torchvision.
  2. 安装facenet_pytorch库:您可以通过克隆项目仓库或使用pip安装facenet_pytorch库。例如,使用pip安装:pip install facenet-pytorch.
  3. 确保您的环境中存在名为"face.jpg"的图像文件,或者您可以替换代码中的图像文件路径为您要使用的图像文件路径。
  4. 在执行代码之前,请确保已经正确安装并导入了所有必要的库。

请注意,此代码示例假定您已经安装了必要的库并具备适当的图像文件。如果您遇到任何问题或错误,请参考相关库的文档和示例以获取更多帮助。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
<项目介绍> 基于机器学习和多模型融合的二手车交易市场大数据挖掘项目源码+项目说明+模型.zip 该资源内项目源码是个人的毕设,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到94.5分,放心下载使用! 该资源适合计算机相关专业(如人工智能、通信工程、自动化、软件工程等)的在校学生、老师或者企业员工下载,适合小白学习或者实际项目借鉴参考! 当然也可作为毕业设计、课程设计、课程作业、项目初期立项演示等。如果基础还行,可以在此代码基础之上改动以实现更多功能。 本项目通过赛事组委会提供的二手车交易样本数据,通过数据分析、信息挖掘等方式,采用机器学习与数学模型来分析二手车估价、交易周期的相关因素。具体问题如下: - 问题1:基于给定的二手车交易样本数据(附件 1:估价训练数据),选用合适的估价方法,构建模型,预测二手车的零售交易价格。 - 问题2:结合附件 4“门店交易训练数据”对车辆的成交周期(从车辆上架到成交的时间长度,单位:天)进行分析,挖掘影响车辆成交周期的关键因素。假如需要加快门店在库车辆的销售速度,你们可 以结合这些关键因素采取哪些行之有效的手段,并进一步说明这些手段的适用条件和预期效果。 - 问题3:依据给出的样本数据集,提出还有哪些问题值得研究,并给出具体的研究思路? 针对问题一,主要实现对二手车交易价格的估计和预测。 - ①在数据层面最重要的是进行数据预处理,主要包括特征的筛选与转化、相关性分析、缺失值填补、数据清洗与统计,首先将部分日期型数据转化为数值型数据,接着通过随机森林算法成功对关键特征的缺失值完成填补,最终得到16个分类变量和13项数值变量,共计30000条可用的样本集数据。 - ②通过对9种机器学习算法的十次迭代,依据6个模型评价标准,筛选出XGBoost算法(XGBR)、随机森林算法(RFR)、装袋算法(BgR)等三类模型,对其进行集成操作后,得到“XGBR+RFR+BgR”集成模型,进而对二手车交易价格进行预测,该模型在给定的评价标准上达到0.630876。 针对问题二,主要实现对二手车交易成功率与成交周期的影响因素分析。 - ①补充了9个特征变量和2个目标变量; - ②采用相关性的热力分布图,初步探索在门店交易特征变量、总体特征变量中影响二手车成交率和成交周期的主要因素;③通过8种机器学习的分类算法,进行十次迭代运算,参考4个模型的评价标准,选取梯度提升算法对二手车成交率的影响因素进行分析,结果发现车型id是影响成交率的最重要因素;④通过9种机器学习的回归算法,经过十次迭代运算,参考平均绝对误差(MAE)和判定系数(R2)等2个评价标准,选取梯度提升算法分析二手车成交周期的影响因素,结果发现调价周期是影响成交周期的首要因素,进而对其现实意义进行了探讨。 ## 1.项目框架 ![项目框架](images1.png) ## 2.程序说明 ### 2.1 convert_to_num.py 分类变量编码代码(pycharm编, 由.py格式导出),用于对数据中的分类变量进行编码(分类变量->数值)和逆编码(数值->分类变量)。 ### 2.2 问题1源程序1_问题1数据缺失值预测.py 问题1数据缺失值预测填充代码(pycharm编,由.py格式导出)。 首先针对于数据缺失问题,对问题1数据集缺失的部分数据用预测的方式进行填充。 ### 2.3 问题1源程序2_问题1交易价格预测.ipynb 问题2成交周期数据挖掘代码(jupyter notebook编, 由. ipynb格式导出)。 问题1缺失值处理完成后,选取特征值对交易价格进行预测。 ### 2.4 问题2源程序_问题2成交周期数据挖掘代码.ipynb 问题2成交周期数据挖掘代码(jupyter notebook编, 由. ipynb格式导出)。 使用提供的数据集,对影响二手车能否成交和二手车成交周期的关键因素进行挖掘。 ### 2.5 data文件夹 用于程序运行时候存放关键数据文件 ### 2.6 model文件夹 用于存放模型文件 ## 3.运行方式 .ipynb中有保留运行结果,.py文件使用右键运行即可。 ### 3.1解决问题1运行步骤: 问题1源程序1_问题1数据缺失值预测.py(先填充缺失值) -> 问题1源程序2_问题1交易价格预测.ipynb(价格预测) ### 3.2解决问题2运行步骤: 问题2源程序_问题2成交周期数据挖掘代码.ipynb ## 4. 交易价格预测模型评价 本项目首先分别采用贝叶斯回归(ByR)、XGBoost算法回归(XGBR)、弹性网络回归(EN)、支持向量机回归(SVR)、梯度提升算法回归(GBR)、随机森林算法回归(RFR)、AdaBoost
"课题:项目6 分析大数据 第2部分 运用大数据分析 Kmeans算法实战 "课次:第19次 " "教学目标及要求: " "(1)任务1 安装Scikit Learn 库(掌握) " "(2)任务2 解析KMeans算法(掌握) " "(3)任务3 运用KMeans算法实战(熟练掌握) " "教学重点: " "(1)任务2 解析KMeans算法(掌握) " "(2)任务3 运用KMeans算法实战(熟练掌握) " "教学难点: " "(1)任务2 解析KMeans算法(掌握) " "(2)任务3 运用KMeans算法实战(熟练掌握) " "思政主题: " "教学步骤及内容 : "旁批栏: " "1.课程引入 " " " " " "2.本次课学习内容、重难点及学习要求介绍 " " "(1)任务1 安装Scikit Learn 库(掌握) " " "(2)任务2 解析KMeans算法(掌握) " " "(3)任务3 运用KMeans算法实战(熟练掌握) " " "3.本次课的教学内容 " " "(1)任务1 安装Scikit Learn 库(掌握) " " "Scikit-learn是Python一个开源机器学习模块,它建立在NumPy,Sci" " "Py和matplotlib模块之上能够为用户提供各种机器学习算法接口,可以" " "让用户简单、高效地进行数据挖掘和数据分析。 " " "分类是指识别给定对象的所属类别,属于监督学习的范畴,最常见的应" " "用场景包括垃圾邮件检测和图像识别等。目前Scikit-learn已经实现的" " "算法包括支持向量机(SVM)、K-近邻、逻辑回归、随机森林、决策树 " " "及多层感知器(MLP)神经网络等。 " " "回归是指预测与给定对象相关联的连续值属性,最常见的应用场景包括" " "预测药物反应和预测股票价格等。 目前Scikit-learn已经实现的算法 " " "包括支持向量回归(SVR)、脊回归、Lasso回归、弹性网络(Elastic " " "Net)、最小角回归(LARS " " ")、贝叶斯回归及各种不同的鲁棒回归算法等。 " " "聚类是指自动识别具有相似属性的给定对象,并将其分组为集合,属于" " "无监督学习的范畴,最常见的应用场景包括顾客细分和试验结果分组。" " "目前Scikit-learn已经实现的算法包括K-均值聚类、谱聚类、均值偏移" " "、分层聚类、DBSCAN聚类等。 " " "数据降维是指使用主成分分析(PCA)、非负矩阵分解(NMF)或特征选" " "择等降维技术来减少要考虑的随机变量的个数,其主要应用场景包括可" " "视化处理和效率提升。 " " "模型选择是指对于给定参数和模型的比较、验证和选择,其主要目的是" " "通过参数调整来提升精度。目前Scikit-learn实现的模块包括格点搜索" " "、交叉验证和各种针对预测误差评估的度量函数。 " " "数据预处理是指数据的特征提取和归一化,是机器学习过程中的第一个" " "也是最重要的环节。这里归一化是指将输入数据转换为具有零均值和单" " "位权方差的新变量,但因为大多数时候都不到精确到零,因此会设置" " "一个可接受的范围,一般都要求范围为0~1。而特征提取是指将文本或 " " "图像数据转换为可用于机器学习的数字变量。 " " "在进去数据分析前,我们需要为我们的IDLE安装sklearn库,安装Sciki" " "t-learn库需要使用如下命令: " " "pip install numpy " " "pip install scipy " " "pip install sklearn " " "(2)任务2 解析KMeans算法(掌握) " " "1)聚类算法 " " "聚类分析是在对象数据中发现对象之间关系。一般来说,组内相似性越" " "高,组间相似性越大,则聚类的效果越好。聚类分析将大量数据划分为" " "性质相同的子类,便于了解数据的分布情况。因此,它广泛应用于模式" " "识别、图像处理、数据压缩等许多领域,例如: " " "在市场分析中,通过聚类分析能帮助决策者识别不同特征的客户群,以" " "及各客户群的行为特征; " " "在生物工程研究中,聚类分析能够用于推导动植物的分类,按照功能对" " "基因进行划分并获取种群中的固有结构特征; " " "在非关系数据库领域(如空间数据库领域),聚类分析能够识别具有相同" " "地理特征的区域以及该区域的环境和人的特征; " " "在web信息检索领域,聚类分析能够对web文档进行分类,提高检索效率" " "。 " " "2)KMeans算法: " " "k-平均算法(英文:k-means " " "clu
【资源说明】 基于Django后端框架的三维点云模型可视化展示与管理系统源码+测试数据+项目操作说明.zip 1 项目介绍 本项目为本人毕业设计研究内容的展示系统,主要聚焦于三维点云上采样与语义分割应用。该系统包括了三维模型算法处理展示、三维模型上传与管理、三维模型渲染管理等功能,现将其开源,以方便后续有三维计算机视觉研究的同学展示使用,也欢迎star/fork/pr/issue,帮助系统更好的完善 :-) 1.1 技术依赖 - 前端依赖:jQuery + Bootstrap3 + ThreeJS + Font-Awesome - 后端依赖:Django - 其它依赖:TensorFlow 1.2 功能介绍 # 1.2.1 展示模块 该模块主要为三维模型算法处理展示,包括了点云上采样展示、场景上采样展示、分割数据集展示、场景分割展示等功能,展示内容一般为原始模型、处理生成模型和标准模型。 # 1.2.2 模型管理模块 该模块是一个简易的文件管理系统,主要为对三维点云模型进行管理,包括了创建目录、重命名目录、删除目录、上传模型、查看模型、下载模型、移动模型、删除模型、上采样模型、回收站管理等功能。 # 1.2.3 模型渲染模块 该模块主要为对三维模型进行网页端的渲染控制,通过调节参数以达到理想的渲染效果。 # 2 环境配置 1. 创建虚拟环境**visapp**并激活(默认当前已在项目根目录**PCVisAPP**)。 ```shell conda create -n pcvisapp python=3.6 --yes conda activate pcvisapp ``` 2. 安装Python Package依赖。 ```shell pip install -r requirements.txt ``` 3. 编译tf算子。注意,如果当前环境不方便安装tensorflow-gpu或者没有GPU可忽略本步骤,但为了确保系统仍能够正常运行,需要将`PointCloudManage/utils.py`中的代码`from PointCloudManage.upsample_op.model import Model`注释,并适当修改方法`upsample_points`。实际上,方法`upsample_points`的目标即调用基于tf的神经网络对三维点云模型进行上采样操作,该方法内也可替换成你的点云处理算法。 ```shell cd PointCloudManage/upsample_op/tf_ops sh compile_ops.sh ``` 4. 下载[参考测试数据](https://drive.google.com/file/d/1hb78WSrDIp2GRBp63lhRISAsDxK-y7_o/view?usp=sharing)。本步骤为可选,可将[参考测试数据](https://drive.google.com/file/d/1hb78WSrDIp2GRBp63lhRISAsDxK-y7_o/view?usp=sharing)解压并覆盖于`static`目录下。 - [下载链接:Google Drive](https://drive.google.com/file/d/1hb78WSrDIp2GRBp63lhRISAsDxK-y7_o/view?usp=sharing) - [下载链接:百度云(提取码:i353)](https://pan.baidu.com/s/1vbjg-n5-DBMyE-55gNg6jw) 5. 运行系统。运行之前需要修改`PointCloudManage/upsample_op/config.py`内`CFG.gpu`为可使用的GPU。 ```shell python manage.py runserver 0.0.0.0:<ip_port> ``` # 3 效果展示 3.1 主页 ![gif图片未加载见resource目录](./resource/index.gif) 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
【资源说明】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的竞赛项目学习资料,作为参考学习借鉴。 3、本资源作为“参考资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研,自行调试。 CCF大数据与计算智能大赛-面向电信行业存量用户的智能套餐个性化匹配模型联通赛源码+学习说明(第二名).zip **数据集解释**:官方下载数据集命名可能不一样 百度云分享数据集我将初赛训练集和测试集分别命名为:train_all.csv,test_1.csv 百度云分享数据集我将复赛训练集和测试集分别命名为:train_2.csv,test_2.csv ## 1.数据说明 | 字段 | 中文名| 数据类型| 说明 | |:-------:|:-------:|:-------:|:-------:| |USERID| 用户ID| VARCHAR2(50)| 用户编码,标识用户的唯一字段| |current_type| 套餐 |VARCHAR2(500) |/| |service_type |套餐类型 |VARCHAR2(10) |0:23G融合,1:2I2C,2:2G,3:3G,4:4G| |is_mix_service |是否固移融合套餐| VARCHAR2(10)| 1.是 0.否| |online_time |在网时长| VARCHAR2(50) |/| |1_total_fee| 当月总出账金额_月 |NUMBER| 单位:元| |2_total_fee |当月前1月总出账金额_月| NUMBER |单位:元| |3_total_fee| 当月前2月总出账金额_月| NUMBER 单位:元| |4_total_fee |当月前3月总出账金额_月 |NUMBER| 单位:元| |month_traffic |当月累计-流量 |NUMBER| 单位:MB| |many_over_bill| 连续超套 |VARCHAR2(500)| 1-是,0-否| |contract_type| 合约类型| VARCHAR2(500) |ZBG_DIM.DIM_CBSS_ACTIVITY_TYPE| |contract_time| 合约时长| VARCHAR2(500)| /| |is_promise_low_consume |是否承诺低消用户| VARCHAR2(500) |1.是 0.否| |net_service |网络口径用户| VARCHAR2(500) |20AAAAAA-2G| |pay_times |交费次数 |NUMBER |单位:次| |pay_num |交费金额 |NUMBER |单位:元| |last_month_traffic |上月结转流量| NUMBER| 单位:MB| |local_trafffic_month| 月累计-本地数据流量 |NUMBER |单位:MB| |local_caller_time| 本地语音主叫通话时长| NUMBER| 单位:分钟| |service1_caller_time |套外主叫通话时长| NUMBER |单位:分钟| |service2_caller_time |Service2_caller_time| NUMBER |单位:分钟| |gender| 性别 |varchar2(100) |01.男 02女| |age| 年龄| varchar2(100)| /| |complaint_level |投诉重要性| VARCHAR2(1000) |1:普通,2:重要,3:重大| |former_complaint_num|交费金历史投诉总量| NUMBER |单位:次| |former_complaint_fee| 历史执行补救费用交费金额 |NUMBER |单位:分| ## 2.配置环境与依赖库 - python3 - scikit-learn - gensim - Ubuntu ## 3.运行代码步骤说明 - path 根据各自所需路径自行修改 - sh run.sh > #!/usr/bin/env bash > python ./src/w2v_feature.py > python ./src/stacking_model.py > python ./src/w2v_feature.py > python ./src/model.py 运行两次 w2v_feature.py是为了 增大差异 ## 4.特征工程
好的,生成房价预测代码需要几步: 1. 收集数据:可以使用公开数据集,例如scikit-learn中的波士顿房价数据集,也可以自己爬取数据。 2. 数据预处理:清洗数据、处理缺失值、去除异常值、特征选择等。 3. 特征工程:对原始数据进行特征提取和转换,例如独热编码、标准化、归一化、特征降维等。 4. 划分训练集和测试集:将数据划分为训练集和测试集,通常是80%训练集,20%测试集。 5. 选择算法:根据预测任务的特点和数据集的规模,选择合适的机器学习算法,例如线性回归、决策树、支持向量机、神经网络等。 6. 训练模型:使用训练集对选定的算法进行训练,得到模型。 7. 模型评估:使用测试集对模型进行评估,计算预测误差、准确率、精确率、召回率等指标。 8. 模型优化:根据模型评估结果,对模型进行调优和优化,例如调整超参数、采用交叉验证等。 9. 模型预测:使用训练好的模型对新数据进行预测,得到预测结果。 下面是一个基于scikit-learn和线性回归算法的房价预测代码示例: ```python # 导入所需的库和数据集 from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score # 加载数据集 boston = load_boston() X = boston.data y = boston.target # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # 创建线性回归模型 model = LinearRegression() # 训练模型 model.fit(X_train, y_train) # 预测结果 y_pred = model.predict(X_test) # 评估模型 print('Mean squared error: %.2f' % mean_squared_error(y_test, y_pred)) print('Coefficient of determination: %.2f' % r2_score(y_test, y_pred)) ``` 在这个示例中,我们使用了scikit-learn中的波士顿房价数据集,将数据集划分为训练集和测试集,使用线性回归算法进行训练和预测,并使用均方误差和决定系数等指标对模型进行评估。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值