考研二阶常系数非齐次微分方程式特解(微分算子法)

本文介绍了使用微分算子法解决二阶常系数非齐次微分方程的方法,包括f(x)=ekx、f(x)=sin(ax)/cos(ax)、f(x)=Pn(x)以及f(x)=ekxg(x)四种情况的特解求解过程,并通过例题详细解析了具体步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

y"+py′+qy=f(x)y^{"}+py^{'}+qy=f(x)y"+py+qy=f(x)
⇒y∗=f(x)F(D)=f(x)D2+pD+q\Rightarrow y^{*}=\frac{f(x)}{F(D)}=\frac{f(x)}{D^2+pD+q}y=F(D)f(x)=D2+pD+qf(x)

1.f(x)=ekx(所有的D都替换成k)f(x)=e^{kx}(所有的D都替换成k)f(x)=ekx(所有的D都替换成k)

eg1:y′′+3y′+2y=5e3xeg1:y^{''}+3y^{'}+2y=5e^{3x}eg1:y′′+3y+2y=5e3x
⇒y∗=1D2+3D+25e3x=132+3∗3+25e3x=14e3x\Rightarrow y^{*}=\frac{1}{D^2+3D+2} 5e^{3x}=\frac{1}{3^2+3*3+2} 5e^{3x}=\frac{1}{4}e^{3x}y=D2+3D+215e3x=32+33+215e3x=41e3x
eg2:y′′+3y′+2y=e−xeg2:y^{''}+3y^{'}+2y=e^{-x}eg2:y′′+3y+2y=ex
⇒y∗=1D2+3D+2e−x=1(−1)2+3∗(−1)+2e−x=10e−x\Rightarrow y^{*}=\frac{1}{D^2+3D+2} e^{-x}=\frac{1}{(-1)^2+3*(-1)+2} e^{-x}=\frac{1}{0}e^{-x}y=D2+3D+21ex=(1)2+3(1)+21ex=01ex

若带入为0, 则求导(每次求导前提一个x,如果带入一直为0就一直求下去)

=1D2+3D+2e−x=x12D+3e−x=x12∗(−1)+3e−x=xe−x=\frac{1}{D^2+3D+2} e^{-x}=x\frac{1}{2D+3} e^{-x}=x\frac{1}{2*(-1)+3} e^{-x}=xe^{-x}=D2+3D+2

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值