y"+py′+qy=f(x)y^{"}+py^{'}+qy=f(x)y"+py′+qy=f(x)
⇒y∗=f(x)F(D)=f(x)D2+pD+q\Rightarrow y^{*}=\frac{f(x)}{F(D)}=\frac{f(x)}{D^2+pD+q}⇒y∗=F(D)f(x)=D2+pD+qf(x)
1.f(x)=ekx(所有的D都替换成k)f(x)=e^{kx}(所有的D都替换成k)f(x)=ekx(所有的D都替换成k)
eg1:y′′+3y′+2y=5e3xeg1:y^{''}+3y^{'}+2y=5e^{3x}eg1:y′′+3y′+2y=5e3x
⇒y∗=1D2+3D+25e3x=132+3∗3+25e3x=14e3x\Rightarrow y^{*}=\frac{1}{D^2+3D+2} 5e^{3x}=\frac{1}{3^2+3*3+2} 5e^{3x}=\frac{1}{4}e^{3x}⇒y∗=D2+3D+215e3x=32+3∗3+215e3x=41e3x
eg2:y′′+3y′+2y=e−xeg2:y^{''}+3y^{'}+2y=e^{-x}eg2:y′′+3y′+2y=e−x
⇒y∗=1D2+3D+2e−x=1(−1)2+3∗(−1)+2e−x=10e−x\Rightarrow y^{*}=\frac{1}{D^2+3D+2} e^{-x}=\frac{1}{(-1)^2+3*(-1)+2} e^{-x}=\frac{1}{0}e^{-x}⇒y∗=D2+3D+21e−x=(−1)2+3∗(−1)+21e−x=01e−x
若带入为0, 则求导(每次求导前提一个x,如果带入一直为0就一直求下去)
=1D2+3D+2e−x=x12D+3e−x=x12∗(−1)+3e−x=xe−x=\frac{1}{D^2+3D+2} e^{-x}=x\frac{1}{2D+3} e^{-x}=x\frac{1}{2*(-1)+3} e^{-x}=xe^{-x}=D2+3D+2