写在前面:最近复习了一遍线性代数,想把学习成果整理出来。本系列博客主要是对学习Introduction to Linear Algebra(Fifth Edition) by Gibert Strang书籍的一个记录。
理论
矩阵定义:矩阵就是一组数的全体,通常排成长方形。下图就是一个2*2的矩阵。
[ a b c d ] \begin{bmatrix} a&b\\c&d \end{bmatrix} [acbd]
矩阵乘法:对于矩阵 A B = C AB=C AB=C有 C i j C_{ij} Cij等于A矩阵的第i行的所有元素依次乘以B矩阵第j列的元素求和。
线性代数的核心工具是矩阵。而矩阵的加减法,我觉得没什么好写的,就是对应位置的元素相加减,从计算符号的角度,乘法还是有必要介绍一下的。所以,我选择从矩阵的乘法作为系列博客的第一章。
应用
邻接矩阵:用一个二维数组存放顶点间关系(边或弧)的数据,这个二维数组称为邻接矩阵。
例如,形如下图的连接关系图可以用矩阵表示

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



