矩阵的乘法(线性代数及其应用【1】)

矩阵的乘法(线性代数及其应用【1】)


写在前面:最近复习了一遍线性代数,想把学习成果整理出来。本系列博客主要是对学习Introduction to Linear Algebra(Fifth Edition) by Gibert Strang书籍的一个记录。

理论

矩阵定义:矩阵就是一组数的全体,通常排成长方形。下图就是一个2*2的矩阵。

[ a b c d ] \begin{bmatrix} a&b\\c&d \end{bmatrix} [acbd]
矩阵乘法:对于矩阵 A B = C AB=C AB=C C i j C_{ij} Cij等于A矩阵的第i行的所有元素依次乘以B矩阵第j列的元素求和。
线性代数的核心工具是矩阵。而矩阵的加减法,我觉得没什么好写的,就是对应位置的元素相加减,从计算符号的角度,乘法还是有必要介绍一下的。所以,我选择从矩阵的乘法作为系列博客的第一章。

应用

邻接矩阵:用一个二维数组存放顶点间关系(边或弧)的数据,这个二维数组称为邻接矩阵。
例如,形如下图的连接关系图可以用矩阵表示

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值