矩阵的乘法(线性代数及其应用【1】)

矩阵的乘法(线性代数及其应用【1】)


写在前面:最近复习了一遍线性代数,想把学习成果整理出来。本系列博客主要是对学习Introduction to Linear Algebra(Fifth Edition) by Gibert Strang书籍的一个记录。

理论

矩阵定义:矩阵就是一组数的全体,通常排成长方形。下图就是一个2*2的矩阵。

[ a b c d ] \begin{bmatrix} a&b\\c&d \end{bmatrix} [acbd]
矩阵乘法:对于矩阵 A B = C AB=C AB=C C i j C_{ij} Cij等于A矩阵的第i行的所有元素依次乘以B矩阵第j列的元素求和。
线性代数的核心工具是矩阵。而矩阵的加减法,我觉得没什么好写的,就是对应位置的元素相加减,从计算符号的角度,乘法还是有必要介绍一下的。所以,我选择从矩阵的乘法作为系列博客的第一章。

应用

邻接矩阵:用一个二维数组存放顶点间关系(边或弧)的数据,这个二维数组称为邻接矩阵。
例如,形如下图的连接关系图可以用矩阵表示

节点1
节点2
节点3
节点4

用邻接矩阵表示为:
A = [ 0 1 1 0 1 0 1 1 1 1 0 1 0 1 1 0 ] A=\begin{bmatrix} 0&1&1&0\\1&0&1&1\\1&1&0&1 \\0&1&1&0 \end{bmatrix} A=0110101111010110
其中,0表示两个点之间没有连接,比如1-1,1-4之间都是没有连接的。而1表示两个点之间是相连的比如1-2,1-3。
所以,两个邻接矩阵相乘的结果是:
A 2 = A ∗ A = [ 2 1 1 2 1 3 2 1 1 2 3 1 2 1 1 2 ] A^2=A*A=\begin{bmatrix} 2&1&1&2\\1&3&2&1\\1&2&3&1 \\2&1&1&2 \end{bmatrix} A2=AA=2112132112312112
上述矩阵表示,两个点之间,用两步可以连接起来的走法有多少种。比如在矩阵 A A A当中1-1之前是么有相连的。现在,矩阵 A 2 A^2 A2表示1-1通过两步的走法有两种,我们观察可知这两种走法分别是1-2-1,1-3-1。也就是用A矩阵的第一行,乘以A矩阵的第一列。
这里它表示是,从1-n之间的路乘以n-1的路。当有一个是断开的时候,即整个为0。只有当1-n是联通的(值为1),而n-1也是联通的时候。这时乘积才为1不为零。把所有乘积的结果进行求和,就得到了1-n-1有两条路可以走,即1-2-1,1-3-1。也就是矩阵 A 2 A^2 A2的第 ( 1 , 1 ) (1,1) (1,1)个元素的值2的由来。
下面给出 A 3 A^3 A3矩阵,读者可以自行探索任意两点之间通过三步到达的方式的个数,以及和矩阵中的数字是否一样。
A 3 = A ∗ A ∗ A = [ 2 5 5 2 5 4 5 5 5 5 4 5 2 5 5 2 ] A^3=A*A*A=\begin{bmatrix} 2&5&5&2\\5&4&5&5\\5&5&4&5 \\2&5&5&2 \end{bmatrix} A3=AAA=2552545555452552

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值