线性代数
文章平均质量分 58
曾见几何
Keep Reading , Keep Writing , Keep Coding.
展开
-
参数方程,隐式方程和显示方程的区别
参数方程:x=x(t)w(t),y=y(t)w(t)x = \frac{x(t)}{w(t)},y=\frac{y(t)}{w(t)}x=w(t)x(t),y=w(t)y(t)隐式曲面:f(x,y)=0f(x,y)=0f(x,y)=0显示方程:y=f(x)y=f(x)y=f(x)以直线为例,说明三者的区别:参数形式:x=a0+a1t,y=b0+b1tx = a_0+a_1t , y=b_0+b_1tx=a0+a1t,y=b0+b1t隐式形式:f(x,y)=ax原创 2022-01-12 17:16:40 · 4205 阅读 · 0 评论 -
旋转的一种计算方式
旋转的计算原创 2022-01-06 15:22:11 · 1722 阅读 · 1 评论 -
特征值的一个例子:斐波那契数列
**问题:**如何求斐波那契数列的通项?notes:斐波那契数列:后面一项是前面两项的求和。eg:1,1,2,3,5,8,13,21。。。**解答:**我们将斐波那契数列的问题写成矩阵形式,即:[xk+2xk+1]=[1110]∗[xk+1xk]\begin{bmatrix} x_{k+2} \\ x_{k+1} \end{bmatrix}=\begin{bmatrix} 1&1 \\ 1 & 0 \end{bmatrix}*\begin{bmatrix} x_{k+1} \\原创 2021-03-02 15:22:41 · 1128 阅读 · 0 评论 -
特征值和特征向量的直观理解
特征值和特征向量的直观理解特征值和特征向量是一个矩阵内在的性质。比如你想象一根长长的铁棒放置不动,不管你在这根铁棒的任何一个位置敲击它,你都知道震动将会沿着铁棒的方向传播。而这个方向,我们可以形象的理解为特征值的方向。人类社会的人口流动,物种的迁徙,短期来看都是不确定的,但长期来看,人口的城市化是大趋势,生物去往水草丰美的栖息地也是大趋势。这一过程我们可以用计算特征值和特征向量的方式计算得到。**问题:**假设一个城市,每年,居住在市区里的人口90%会留在市区,10%会迁往乡村。而乡村的人口80%会留原创 2021-03-02 15:20:20 · 1169 阅读 · 0 评论 -
最小二乘法的形象理解
最小二乘法拟合变量x和y之间的线性方程:y=b0+b1∗xy=b_0+b_1*xy=b0+b1∗x.我们将其形式写作[1x11x2......1xn][b0b1]=[y1y2...yn]\begin{bmatrix}1 & x_1 \\ 1 & x_2\\ ...& ...\\1&x_n\\ \end{bmatrix} \begin{bmatrix}b_0 \\ b_1\\ \end{bmatrix} = \begin{bmatrix}y_1 \\ y_2 \\原创 2021-01-18 14:12:08 · 183 阅读 · 0 评论 -
如何定义距离?
如何定义距离?最近在思考,如果我有一堆点,我该怎么构造他们的距离关系?理论推导:(1)范数的定义范数是一个函数,是矢量空间内的所有矢量赋予非零的正长度或大小。解读:我可以构造所有点对之间的矢量,即从点a到b的矢量ab⃗\vec{ab}ab,我们可以给这些矢量定义范数。(2)范数的三个条件《1》非负性:aa⃗=0,ab⃗≠0(a≠b)\vec{aa}=0,\vec{ab}\ne0(a\ne b)aa=0,ab=0(a=b)。《2》齐次性:ab⃗=ba⃗\vec{ab}=\vec{ba}原创 2021-01-10 01:42:08 · 798 阅读 · 0 评论 -
方程组的第三种理解方式(线性代数及其应用【3】)
(1) 关于解方程组的第三种理解最近看书对AX=YAX=YAX=Y又多了一种理解方式。这是一个最基础的理解方式,即对于一个集合XXX,我们对这个集合做一个映射AAA,映射得到的结果YYY。Notes:其中的X、YX、YX、Y可以分别理解成定义域和值域。另外,由矩阵的知识可知,对于集合AB=CAB=CAB=C,我们知道C的秩<A的秩 且 C的秩<B的秩。C的秩<A的秩 ~~且 ~~C的秩<B的秩。C的秩<A的秩原创 2020-12-03 19:58:00 · 251 阅读 · 0 评论 -
方程组的两种理解方式(线性代数及其应用【2】)
(1) 关于解方程组的两种理解第一种:横着看即将每个方程看成一条线或者一个平面,则方程组的解可以理解为是方程组所有直接或者平面的交点。原创 2020-11-06 14:06:37 · 1555 阅读 · 0 评论 -
矩阵的乘法(线性代数及其应用【1】)
矩阵的乘法(线性代数及其应用【1】)理论应用写在前面:最近复习了一遍线性代数,想把学习成果整理出来。本系列博客主要是对学习Introduction to Linear Algebra(Fifth Edition) by Gibert Strang书籍的一个记录。理论矩阵定义:矩阵就是一组数的全体,通常排成长方形。下图就是一个2*2的矩阵。[abcd]\begin{bmatrix} a&b\\c&d \end{bmatrix}[acbd]矩阵乘法:对于矩阵AB=CAB=CAB=C原创 2020-10-20 22:20:03 · 2378 阅读 · 2 评论