题目
领扣300
给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例:
输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
参考链接
方法一:动态规划,时间复杂度O(n^2)
将问题分阶段,查找最长上升子序列->查找上升子序列的终点。设F[i]为以A[i]结尾的最长上升子序列的长度。求出状态转移方程:
F [ i ] = max { F [ j ] + 1 ,F [ i ] } (1 <= j < i,A[ j ] < A[ i ])
#include <iostream>
#include<iomanip>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=10001;
int main() {
int n,ans=0;
int a[N],dp[N];
memset(a,0,sizeof(a));
memset(dp,0,sizeof(dp));
cin>>n;
for(int i=0;i<n;i++)
cin>>a[i];
for(int i=0;i<n;i++){
dp[i]=1;
for(int j=0;j<i;j++){
if(a[j]<a[i])
dp[i]=max(dp[i],dp[j]+1);
}
ans= max(ans,dp[i]);
}
cout<<ans<<endl;
return 0;
}
方法二:树状维护,时间复杂度O(nlogn)
当O(n^2)时,dp状态转移方程为:
F [ i ] = max { F [ j ] + 1 ,F [ i ] } (1 <= j < i,A[ j ] < A[ i ])
当我们在查找F[j]的最大值时,需要遍历一次数组,时间复杂度较大,可以使用数据结构化来优化这个过程。
把A数组从小到大排序,同时把A[i]在排序前的序号记录下来。从小到大枚举A[i],每次用编号小于等于A[i]编号长度的LIS长度+1来更新结果。
(树状数组球LIS不去重->最长不下降子序列)
#include <iostream>
#include<iomanip>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=10001;
struct Node{
int val;
int num;
}a[N];
int bp[N];
bool cmp(Node x1,Node x2){
return x1.val==x2.val?x1.num<x2.num:x1.val<x2.val;
}
void modify(int x,int y,int n)//把val[x]替换为val[x]和y中较大的数
{
for(;x<=n;x+=x&(-x)) bp[x]=max(bp[x],y);
}
int main() {
int ans=0,res=0;
int n;
cin>>n;
for(int i=0;i<n;i++){
cin>>a[i].val;
a[i].num=i;//记录a[i]的原编号
}
sort(a,a+n,cmp);
for(int i=0;i<n;i++){//按权重枚举
int t=a[i].num;
int max_j;
for(;t;t-=t&(-t))
ans=max(ans,bp[t]);
max_j = ans;
//长度 +1 ,更新LIS长度
modify(a[i].num,++max_j,n);
//更新答案
res=max(res,max_j);
}
cout<<res<<endl;
return 0;
}
方法三:贪心算法+二分查找,时间复杂度O(nlogn)
新建一个low数组,low[I]表示长度为i的LIS结尾元素的最小值。对于上升序列而言,结尾元素越小,越有有利于接其他元素,变长的可能性越大。对于每一个a[i],如果a[i]>low[当前最长的LIS长度],就把a[i]接到当前最长的LIS后面,即low[当前最长的LIS长度++]=a[i]。
#include <iostream>
#include<iomanip>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N=10001;
int low[N],a[N];
int n,ans=0;
int binary_search(int *a,int r,int x)
{//返回a数组中第一个大于等于x的位置
int l=1,mid;
while(l<=r){
mid=(l+r)/2;
if(a[mid]<=x) l=mid+1;
else r=mid-1;
}
return l;
}
int main() {
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
low[i]=N;
}
low[1]=a[1];
ans=1;
for(int i=2;i<=n;i++){
if(a[i]>low[ans])
low[++ans]=a[i];
else
low[binary_search(low,ans,a[i])] =a[i];
}
cout<<ans<<endl;
return 0;
}