numpy
拼接行列
np.r_[a,b]
- np.c_[a,b]
newarray=delete(array,obg,axis)
np.vstack((arr1,arr2)) #行 r_
np.hstack((arr1,arr2))
np.concatenate((A,B,B,a),axis=1)
b=np.append(b,i)
input_dataset = np.column_stack([x,y])
random
random.normal(mean,var,size)
生成数组
np.arange(start,end,step)
- arange([start,] stop[, step,], dtype=None)
np.linespace(1,10,20)
- numpy.linspace(start, stop, num=50, dtype=None)
range
- range(start, stop[, step])
zeros(2,3)
np.ones((2,4),dtype=int)
np.empty((2,3))
randn(7,4)
np.array([]) 空
随机数
- np.ramdom.normal(size=(4,4))
- rand均匀分布
- randint(min,max)
- randn正太分布
reshape
reshape(-1,1)//n行,弄成1列
索引
从0开始
最后一个元素的下标是-1
arr[2][1]=arr[2,1]
索引.bmp
分片/分割
a[开始索引:结束索引:步长]
np.split(arr,2,axis=1)
np.array_split(A,3,axis=1) #不等
np.vsplit(arr,3)
运算
np.dot(arr.T,arr)
np.sin(arr)
print(arr<3) //
np.sum()
np.argmin(arr)
np.min(arr)
np.median(arr)
np.nonzero(arr)
np.clip(arr,min,max)
arr[:,np.newaxis]
- arr.T
函数
排序函数
- sort
统计函数
- mean/std/var
线性代数
- eig特征值
- inv逆
- qr分解
- svd分级
读写文本
loadtxt
savetxt
read_csv
np.fromfile(“data.bin”,dtype=np.float)
唯一化
unique找到数据唯一值//去重复
类型转换
arr.astype(‘int32’)
df.as_matrix()//转pandas为numpy
- padas_excel.py
import pandas as pd
d= pd.read_excel('datae.xlsx')
print(d)
dn = d.as_matrix()
print(dn)
d1=pd.DataFrame(dn)
print(d1)
pd.DataFrame(arr)//转numpy为pandas
类型
-
narray
-
matrix
属性
ndim,shape,dtype,size,itemsize
flat
arr.flat
arr.flattern()
copy/deepcopy
b=a.copy()
XMind - Trial Version