python_numpy_xmind

numpy

拼接行列

np.r_[a,b]

  • np.c_[a,b]

newarray=delete(array,obg,axis)

np.vstack((arr1,arr2)) #行 r_

np.hstack((arr1,arr2))

np.concatenate((A,B,B,a),axis=1)

b=np.append(b,i)

input_dataset = np.column_stack([x,y])


random

random.normal(mean,var,size)


生成数组

np.arange(start,end,step)

  • arange([start,] stop[, step,], dtype=None)

np.linespace(1,10,20)

  • numpy.linspace(start, stop, num=50, dtype=None)

range

  • range(start, stop[, step])

zeros(2,3)

np.ones((2,4),dtype=int)

np.empty((2,3))

randn(7,4)

np.array([]) 空

随机数

  • np.ramdom.normal(size=(4,4))
  • rand均匀分布
  • randint(min,max)
  • randn正太分布

reshape

reshape(-1,1)//n行,弄成1列


索引

从0开始

最后一个元素的下标是-1

arr[2][1]=arr[2,1]

索引.bmp

在这里插入图片描述


分片/分割

a[开始索引:结束索引:步长]

np.split(arr,2,axis=1)

np.array_split(A,3,axis=1) #不等

np.vsplit(arr,3)


运算

np.dot(arr.T,arr)

np.sin(arr)

print(arr<3) //

np.sum()

np.argmin(arr)

np.min(arr)

np.median(arr)

np.nonzero(arr)

np.clip(arr,min,max)

arr[:,np.newaxis]

  • arr.T

函数

排序函数

  • sort

统计函数

  • mean/std/var

线性代数

  • eig特征值
  • inv逆
  • qr分解
  • svd分级

读写文本

loadtxt

savetxt

read_csv

np.fromfile(“data.bin”,dtype=np.float)


唯一化

unique找到数据唯一值//去重复


类型转换

arr.astype(‘int32’)

df.as_matrix()//转pandas为numpy

  • padas_excel.py
import pandas as pd

d= pd.read_excel('datae.xlsx')
print(d)
dn = d.as_matrix()
print(dn)
d1=pd.DataFrame(dn)
print(d1)

pd.DataFrame(arr)//转numpy为pandas


类型

  • narray

  • matrix


属性

ndim,shape,dtype,size,itemsize

flat

arr.flat

arr.flattern()


copy/deepcopy

b=a.copy()

XMind - Trial Version

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值