1.基于依赖分析的方法
核心思想:首先,对训练样本进行条件独立性测试,确定变量之间的条件独立性;然后,利用变量之间的条件独立性以及碰撞识别法等对边进行定向,构造出和这些条件独立及依赖关系一致的网络模型,以及尽可能多地覆盖这些条件独立性,这些算法适合稀疏贝叶斯网络的结构学习。
(1)SGS算法:该算法在节点序未知的情况下,选择无向完全图作为初始网络,然后通过条件独立性测试来消减网络中冗余的边,但需要指数级的条件独立性测试。
(2)PC 算法(改进的SGS算法):该算法选择空图作为初始网络,通过条件独立性测试向网络结构中添加边,该算法对于稀疏网络的结构学习具有较小的计算量,与SGS算法相比,具有较高的学习效率。
(3)TPDA算法:该算法包括建立草图(Drafting)、增厚(Thickening)、消减(Thinning)三个阶段来进行贝叶斯网络的结构学习。该算法的时间性能与是否提供节点序有关,若节点序已知,其时间复杂度为O(n2),若节点序未知,其时间复杂度为O(n4).这里的n是网络中节点的个数。TPDA算法在时间性能和准确度方面均优于PC算法。
2.基于评分搜索的方法
基于评分搜索的方法的核心思想是基于某种评分函数在所有的结构空间进行搜索,知道找到与数据集最匹配的网络结构。
(1)评分函数是一种评价网络拓扑结构与样本集拟合程度的度量。
(2)常用的评分方法主要有贝叶斯评分(Bde,Bayesian Dirichlet
贝叶斯网络结构学习的研究现状
最新推荐文章于 2025-04-02 15:47:54 发布