贝叶斯网络结构学习的研究现状

本文探讨了贝叶斯网络结构学习的方法,包括基于依赖分析的SGS、PC、TPDA算法,评分搜索的K2、K3算法,以及混合方法和连续变量系统的结构学习。依赖分析通过条件独立性测试构造网络模型,评分搜索则基于评分函数寻找最佳结构。CB算法结合了两种方法,而连续变量学习如L1MB和TC算法则针对连续数据的贝叶斯网络进行结构发现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.基于依赖分析的方法
核心思想:首先,对训练样本进行条件独立性测试,确定变量之间的条件独立性;然后,利用变量之间的条件独立性以及碰撞识别法等对边进行定向,构造出和这些条件独立及依赖关系一致的网络模型,以及尽可能多地覆盖这些条件独立性,这些算法适合稀疏贝叶斯网络的结构学习。
(1)SGS算法:该算法在节点序未知的情况下,选择无向完全图作为初始网络,然后通过条件独立性测试来消减网络中冗余的边,但需要指数级的条件独立性测试。
(2)PC 算法(改进的SGS算法):该算法选择空图作为初始网络,通过条件独立性测试向网络结构中添加边,该算法对于稀疏网络的结构学习具有较小的计算量,与SGS算法相比,具有较高的学习效率。
(3)TPDA算法:该算法包括建立草图(Drafting)、增厚(Thickening)、消减(Thinning)三个阶段来进行贝叶斯网络的结构学习。该算法的时间性能与是否提供节点序有关,若节点序已知,其时间复杂度为O(n2),若节点序未知,其时间复杂度为O(n4).这里的n是网络中节点的个数。TPDA算法在时间性能和准确度方面均优于PC算法。
2.基于评分搜索的方法
基于评分搜索的方法的核心思想是基于某种评分函数在所有的结构空间进行搜索,知道找到与数据集最匹配的网络结构。
(1)评分函数是一种评价网络拓扑结构与样本集拟合程度的度量。
(2)常用的评分方法主要有贝叶斯评分(Bde,Bayesian Dirichlet

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值