基于SIFT和颜色特征的花卉图像分类

在这里插入图片描述

基于SIFT特征和颜色直方图的花卉图像分类

摘 要

课程实验提取图片的SIFT特征,通过k均值聚类的方法将所有训练图片的特征聚类为800类,以每个类出现的频率构建特征向量(又称为词袋模型),同时,通过观察数据集可以发现,颜色在构建每一个类的独特性的时候提供了较大的贡献,遂本文采用融合SIFT词袋模型特征向量和图像HSV颜色直方图的方法作为图片特征描述子,并使用支持向量机(SVM)进行分类。通过实验验证和数据分析可以发现该方法在OXFORD_flower17数据集上获得了不错的效果(72.3%)。

关键词:SIFT ;k均值聚类; 颜色直方图 ; 图像分类 ;词袋模型 ;SVM

图像分类简述(前言)

图像分类设计到根据图像的视觉内容对判断图像属于哪一个预定的标签。尽管人脑识别图片中的物体是一个很简单的过程,但对于计算机而言,鲁棒性的图像识别仍然是计算机视觉中一个颇具挑战的任务。传统机器视觉的图像分类的流程主要包括以下几个部分:数据预处理,特征提取,分类器训练,分类器识别。
1、数据预处理:原始的图片含有大量的冗余信息和噪声,不利于后续的特征提取,例如,在HOG算子提取之前,需要先对图片进行低通滤波,这是考虑到HOG算子需要计算图像的梯度,而梯度检测对噪声十分敏感,因此需要预先对图片进行低通滤波去除噪声。
2、特征提取:特征是对抽象图片内容的一种数据表示。在提取出图像描述子之后,我们可以利用图像描述子构建每张图片对应的特征向量,作为数据送入训练器训练分类模型。
3、分类器训练:对于已经拥有的样本标签和样本特征数据,我们将其作为分类器的训练数据使其学会一个分类模型或者分类函数。常见的分类器包括支持向量机(SVM)、决策树、逻辑回归、朴素贝叶斯、神经网络等算法。
4、分类预测: 为了测试训练好的分类器的性能,需要将测试图片提取的特征向量送入分类器进行预测,得到的输出结果

基于SIFT特征SVM的图像分类是一种常见的计算机视觉任务。下面以Python语言为例,简要介绍其实现。 SIFT特征是一种对图像进行特征提取描述的方法,它能够提取出图像中不受尺度旋转变化影响的关键点,并生成对应的特征描述子。在Python中,可以使用OpenCV库中的SIFT方法来提取SIFT特征。 SVM(支持向量机)是一种常用的机器学习算法,用于进行分类。在Python中,可以使用scikit-learn库中的SVM模型来进行图像分类。 基于SIFT特征SVM的图像分类的主要步骤如下: 1. 首先,准备好用于训练测试的图像数据集。图像数据集应包含标记的不同类别的图像。 2. 对于每个图像,使用SIFT方法提取图像的特征特征描述子。可以使用OpenCV库中的SIFT方法来实现。 3. 将每个图像的SIFT特征描述子作为输入,构建一个特征向量,并将这些特征向量与相应的标签一起作为训练数据。 4. 使用训练数据训练一个SVM分类器。可以使用scikit-learn库中的SVM模型来实现。 5. 对于测试图像,使用SIFT方法提取特征特征描述子,构建特征向量,并使用已训练的SVM分类器进行分类预测。 6. 根据分类预测结果评估分类器的性能,比如计算准确率、召回率等指标。 通过上述步骤,就可以基于SIFT特征SVM进行图像分类。需要注意的是,SIFT特征提取SVM分类器训练可能需要较长的时间,特别是在处理大规模图像数据时。因此,对于大规模数据集,可以考虑采用一些优化方法,如降维算法特征选择算法,以提高效率分类性能。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值