笔记:基本的世代交叠模型

本文探讨了基本的世代交叠模型,模型中个人在特定时刻出生并经历两个时期。效用函数采用对数形式,不考虑贴现。通过最大化效用函数和整合预算约束,得出拉格朗日函数及一阶条件,最终揭示了消费在两期之间的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设像戴蒙德模型中的一样, L t L_t Lt个两期存活的个人在t时刻出生,并且 L t = ( 1 + n ) L t − 1 L_t=(1+n)L_{t-1} Lt=(1+n)Lt1。设效用函数为对数形式且没有贴现,即 U t = l n ( C 1 , t ) + l n ( C 2 , t + 1 ) U_t=ln(C_{1,t})+ln(C_{2,t+1}) Ut=ln(C1,t)+ln(C2t+1)
最大化效用
U t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值