矩阵表示的经典线性回归模型

假设

  1. 线性
    { Y t , X t ′ } \{Y_t,X_t'\} {Yt,Xt}是一个可观测的随机样本,且
    Y t = X t ′ β 0 + ε t , t = 1 , . . , n Y_t=X_t'\beta^0+\varepsilon_t,t=1,..,n Yt=Xtβ0+εt,t=1,..,n
  2. 严格外生
    E ( ε t ∣ X ) = 0 E(\varepsilon_t|X)=0 E(εtX)=0
    矩阵 X X X包含所有的自变量向量 X 1 , X 2 , . . . , X n X_1,X_2,...,X_n X1,X2,...,Xn
  3. 非奇异性
    (1) K ∗ K K*K KK方阵 X ′ X = ∑ X t X t ′ X'X=\sum X_t X_t' XX=XtXt是非奇异的。
    (2) 当 n → ∞ n\rightarrow\infty n时, X ′ X X'X XX的最小特征值也为无穷的概率为1。
  4. 球形误方差
    (1)条件同方差
    E ( ε t 2 ) = σ 2 > 0 , t = 1 , . . , n E(\varepsilon_t^2)=\sigma^2>0,t=1,..,n E(εt2)=σ2>0,t=1,..,n
    (2)条件不相关
    E ( ε t ε s ∣ X ) = 0 , t ≠ s E(\varepsilon_t\varepsilon_s|X)=0,t\not=s E(εtεsX)=0,t=s
    值得注意的是给定假设2,即 E ( ε t ∣ X ) = 0 E(\varepsilon_t|X)=0 E(εtX)=0,那么
    v a r ( ε t ∣ X ) = E ( ε t 2 ∣ X ) − [ E ( ε ∣ X ) ] 2 = σ 2 var(\varepsilon_t|X)=E(\varepsilon_t^2|X)-[E(\varepsilon|X)]^2=\sigma^2 var(εtX)=E(εt2X)[E(εX)]2=σ2
    这意味着条件同方差。

估计

残差平方和(sum of squared residuals)为
S S R ( β ) = ( Y − X β ) ′ ( Y − X β ) = ∑ ( Y t − X t ′ β ) 2 SSR(\beta)=(Y-X\beta)'(Y-X\beta)=\sum(Y_t-X_t'\beta)^2 SSR(β)=(YXβ)(YXβ)=(YtXtβ)2
OLS估计就是选择 β \beta β使得SSR最小,那么我们对SSR求导令其为0:
d S S R d β = ∑ 2 ( Y t − X t ′ β ) d ( Y t − X t ′ β ) d β = − 2 ∑ ( Y t − X t ′ β ) X t = − 2 X ′ ( Y − X β ) = 0 \frac{d SSR}{d\beta}=\sum 2(Y_t-X_t'\beta)\frac{d(Y_t-X_t'\beta)}{d\beta}\\=-2\sum (Y_t-X_t'\beta)X_t=-2X'(Y-X\beta)=0 dβdSSR=2(YtXtβ)dβd(YtXtβ)=2(YtXtβ)Xt=2X(YXβ)=0
解得 β ^ = ( X ′ X ) − 1 X ′ Y \hat \beta=(X'X)^{-1}X'Y β^=(XX)1XY

估计量的性质

  • 无偏性
    β ^ − β 0 = ( X ′ X ) − 1 X ′ Y − β 0 = ( X ′ X ) − 1 X ′ ( X β 0 + ε ) − β 0 = ( X ′ X ) − 1 X ′ ε \hat\beta-\beta^0=(X'X)^{-1}X'Y-\beta^0\\=(X'X)^{-1}X'(X\beta^0+\varepsilon)-\beta^0=(X'X)^{-1}X'\varepsilon β^β0=(XX)1XYβ0=(XX)1X(Xβ0+ε)β0=(XX)1Xε

    E ( β ^ − β 0 ) = ( X ′ X ) − 1 X ′ E ( ε ) = 0 E(\hat\beta-\beta^0)=(X'X)^{-1}X'E(\varepsilon)=0 E(β^β0)=(XX)1XE(ε)=0
  • 估计量方差
    已知 β ^ − β 0 = ( X ′ X ) − 1 X ′ ε \hat\beta-\beta^0=(X'X)^{-1}X'\varepsilon β^β0=(XX)1Xε E ( ε ε ′ ∣ X ) = σ 2 I E(\varepsilon\varepsilon'|X)=\sigma^2I E(εεX)=σ2I,则
    v a r ( β ^ ∣ X ) = E { [ β ^ − E ( β ^ ∣ X ) ] [ β ^ − E ( β ^ ∣ X ) ] ′ ∣ X } = E [ ( β ^ − β 0 ) ( β ^ − β 0 ) ′ ∣ X ] = ( X ′ X ) − 1 X ′ E ( ε ε ′ ∣ X ) X ( X ′ X ) − 1 = σ 2 ( X ′ X ) − 1 var(\hat\beta|X)=E \{ [\hat\beta-E(\hat\beta|X)][\hat\beta-E(\hat\beta|X)]'|X\}\\=E[(\hat\beta-\beta^0)(\hat\beta-\beta^0)'|X]\\=(X'X)^{-1}X'E(\varepsilon\varepsilon'|X)X(X'X)^{-1} \\=\sigma^2(X'X)^{-1} var(β^X)=E{[β^E(β^X)][β^E(β^X)]X}=E[(β^β0)(β^β0)X]=(XX)1XE(εεX)X(XX)1=σ2(XX)1
  • 残差方差估计量
    定义 P = X ( X ′ X ) − 1 X P=X(X'X)^{-1}X P=X(XX)1X M = I n − P M=I_n-P M=InP

    e = Y − X β ^ = Y − ( X ′ X ) − 1 X Y = [ I − ( X ′ X ) − 1 X ] Y = M Y = M ( X β 0 + ε ) = M ε e=Y-X\hat\beta=Y-(X'X)^{-1}XY\\=[I-(X'X)^{-1}X]Y=MY\\=M(X\beta^0+\varepsilon)=M\varepsilon e=YXβ^=Y(XX)1XY=[I(XX)1X]Y=MY=M(Xβ0+ε)=Mε
    那么 e ′ e = ( M ε ) ′ M ε = ε ′ M ε e'e=(M\varepsilon)'M\varepsilon=\varepsilon'M\varepsilon ee=(Mε)Mε=εMε
    E ( e ′ e ) = E ( ε ′ M ε ∣ X ) = E [ t r ( ε ε ′ M ) ∣ X ] = σ 2 t r ( M ) = σ 2 ( n − K ) E(e'e)=E(\varepsilon'M\varepsilon|X)=E[tr(\varepsilon\varepsilon'M)|X]\\=\sigma^2tr(M)=\sigma^2(n-K) E(ee)=E(εMεX)=E[tr(εεM)X]=σ2tr(M)=σ2(nK)
    残差方差估计量为 e ′ e / ( n − K ) e'e/(n-K) ee/(nK)

假设检验

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值