双变量回归模型:估计问题

普通最小二乘估计

m i n ∑ ( Y i − Y ^ i ) 2 = ∑ ( Y i − β 0 − β 1 X i ) 2 min \sum (Y_i-\hat Y_i)^2=\sum (Y_i-\beta_0-\beta_1 X_i)^2 min(YiY^i)2=(Yiβ0β1Xi)2
β 0 , β 1 \beta_0,\beta_1 β0,β1求导,令为0:
2 ∑ ( Y i − β 0 − β 1 X i ) ( − 1 ) = 0 2 ∑ ( Y i − β 0 − β 1 X i ) ( − X i ) = 0 2\sum(Y_i-\beta_0-\beta_1X_i)(-1)=0 \\2\sum(Y_i-\beta_0-\beta_1X_i) (-X_i)=0 2(Yiβ0β1Xi)(1)=02(Yiβ0β1Xi)(Xi)=0

∑ Y i = n β 0 + β 1 ∑ X i ∑ X i Y i = β 0 ∑ X i + β 1 ∑ X i 2 \sum Y_i=n\beta_0+\beta_1\sum X_i \\\sum X_iY_i=\beta_0\sum X_i+\beta_1\sum X_i^2 Yi=nβ0+β1XiXiYi=β0Xi+β1Xi2
上式乘以 ∑ X i \sum X_i Xi,下式乘以 n n n
∑ X i ∑ Y i = n β 0 ∑ X i + β 1 ( ∑ X i ) 2 n ∑ X i Y i = n β 0 ∑ X i + n β 1 ∑ X i 2 \sum X_i\sum Y_i=n\beta_0\sum X_i+\beta_1(\sum X_i)^2 \\n\sum X_iY_i=n\beta_0\sum X_i+n\beta_1\sum X_i^2 XiYi=nβ0Xi+β1(Xi)2nXiYi=nβ0Xi+nβ1Xi2
两式相减得
∑ X i ∑ Y i − n ∑ X i Y i = β 1 [ ( ∑ X i ) 2 − n ∑ X i 2 ] \sum X_i\sum Y_i-n\sum X_iY_i=\beta_1[(\sum X_i)^2-n\sum X_i^2] XiYinXiYi=β1[(Xi)2nXi2]
解得
β ^ 1 = n ∑ X i Y i − ∑ X i ∑ Y i n ∑ X i 2 − ( ∑ X i ) 2 = ∑ ( X i − X ‾ ) ( Y i − Y ‾ ) ∑ ( X i − X ‾ ) 2 = ∑ x i y i ∑ x i 2 \hat \beta_1=\frac{n\sum X_i Y_i-\sum X_i\sum Y_i}{n\sum X_i^2-(\sum X_i)^2}\\\quad\\=\frac{\sum (X_i-\overline X)(Y_i-\overline Y)}{\sum (X_i-\overline X)^2}=\frac{\sum x_iy_i}{\sum x_i^2} β^1=nXi2(Xi)2nXiYiXiYi=(XiX)2(XiX)(YiY)=xi2xiyi

β ^ 0 = Y ‾ − β ^ 1 X ‾ \hat \beta_0=\overline Y-\hat \beta_1 \overline X β^0=Yβ^1X

估计的方差

  • β ^ 1 \hat\beta_1 β^1的方差

v a r ( β ^ 1 ) = E ( β ^ 1 − E ( β ^ 1 ) ) 2 = E ( ∑ x i ∑ x i 2 Y i − β 1 ) 2 = E [ ∑ x i ∑ x i 2 ( β 0 + β 1 X i + μ i ) − β 1 ] 2 = E ( ∑ x i ∑ x i 2 μ i ) 2 var(\hat\beta_1)=E(\hat\beta_1-E(\hat \beta_1))^2\\=E(\sum \frac{x_i}{\sum x_i^2}Y_i-\beta_1)^2\\=E[\sum \frac{x_i}{\sum x_i^2}(\beta_0+\beta_1 X_i+\mu_i)-\beta_1]^2 \\=E(\sum \frac{x_i}{\sum x_i^2}\mu_i)^2 var(β^1)=E(β^1E(β^1))2=E(xi2xiYiβ1)2=E[xi2xi(β0+β1Xi+μi)β1]2=E(xi2xiμi)2
由于 E ( μ i 2 ) = σ , E ( μ i μ j ) = 0 E(\mu_i^2)=\sigma,E(\mu_i\mu_j)=0 E(μi2)=σ,E(μiμj)=0,则上式为
v a r ( β ^ 1 ) = σ 2 ∑ ( x i ∑ x i 2 ) 2 = σ 2 ∑ x i 2 var(\hat\beta_1)=\sigma^2\sum (\frac{x_i}{\sum x_i^2})^2=\frac{\sigma^2}{\sum x_i^2} var(β^1)=σ2(xi2xi)2=xi2σ2

  • β 0 \beta_0 β0的方差
    v a r ( β ^ 0 ) = E [ Y ‾ − X ‾ ∑ k i ( β 0 + β 1 X i + μ i ) − β 0 ] = E [ Y ‾ − β 1 X ‾ − X ‾ ∑ k i μ i − β 0 ] = E [ X ‾ ∑ x i ∑ x i 2 μ i ] 2 = σ 2 ∑ ( X ‾ x i ∑ x i ) 2 = σ 2 X i 2 n ∑ x i 2 var(\hat\beta_0)=E[\overline Y-\overline X \sum k_i (\beta_0+\beta_1X_i+\mu_i)-\beta_0] \\=E[\overline Y-\beta_1\overline X-\overline X\sum k_i\mu_i-\beta_0]\\=E[\overline X\sum \frac{x_i}{\sum x_i^2} \mu_i]^2= \sigma^2\sum(\overline X\frac{x_i}{\sum x_i})^2 \\ =\sigma^2\frac{X_i^2}{n\sum x_i^2} var(β^0)=E[YXki(β0+β1Xi+μi)β0]=E[Yβ1XXkiμiβ0]=E[Xxi2xiμi]2=σ2(Xxixi)2=σ2nxi2Xi2
  • σ 2 \sigma^2 σ2的估计
    Y i = β 0 + β 1 X i + μ i Y ‾ = β 0 + β 1 X ‾ + u ‾ Y_i=\beta_0+\beta_1X_i+\mu_i\\ \overline Y=\beta_0+\beta_1\overline X+\overline u Yi=β0+β1Xi+μiY=β0+β1X+u
    两式相减得
    y i = β 1 x i + ( μ i − μ ‾ ) y_i=\beta_1x_i+(\mu_i-\overline \mu) yi=β1xi+(μiμ)
    又知道
    μ ^ = y i − β ^ 1 x i \hat\mu=y_i-\hat\beta_1 x_i μ^=yiβ^1xi

    μ ^ = β 1 x i + ( μ i − μ ‾ ) − β ^ 1 x i = ( β 1 − β ^ 1 ) x i + ( μ i − μ ‾ ) \hat \mu=\beta_1x_i+(\mu _i-\overline \mu)-\hat \beta_1 x_i\\= (\beta_1-\hat\beta_1)x_i+(\mu_i-\overline \mu) μ^=β1xi+(μiμ)β^1xi=(β1β^1)xi+(μiμ)
    那么
    E ∑ μ ^ 2 = E [ ∑ ( β 1 − β ^ 1 ) 2 x i 2 + ∑ ( μ i − μ ‾ ) 2 − 2 ∑ ( β 1 − β ^ 1 ) x i ( μ i − μ ‾ ) ] = v a r ( β ^ 1 ) ∑ x i 2 + ( n − 1 ) σ 2 − 2 E [ ∑ k i μ i x i ( μ i − μ ‾ ) ] = σ 2 + ( n − 1 ) σ 2 − 2 σ 2 = ( n − 2 ) σ 2 E\sum \hat \mu^2=E[\sum(\beta_1-\hat\beta_1)^2x_i^2+\sum(\mu_i-\overline \mu)^2-2\sum (\beta_1-\hat\beta_1)x_i(\mu_i-\overline \mu)]\\ =var(\hat\beta_1)\sum x_i^2+(n-1)\sigma^2-2E[\sum k_i\mu_ix_i(\mu_i-\overline \mu)]\\=\sigma^2+(n-1)\sigma^2-2\sigma^2=(n-2)\sigma^2 Eμ^2=E[(β1β^1)2xi2+(μiμ)22(β1β^1)xi(μiμ)]=var(β^1)xi2+(n1)σ22E[kiμixi(μiμ)]=σ2+(n1)σ22σ2=(n2)σ2
    那么令
    σ ^ 2 = ∑ μ ^ 2 n − 2 \hat\sigma^2=\frac{\sum\hat\mu^2}{n-2} σ^2=n2μ^2
    E ( σ ^ 2 ) = ( n − 2 ) σ 2 / ( n − 2 ) = σ 2 E(\hat\sigma^2)=(n-2)\sigma^2/(n-2)=\sigma^2 E(σ^2)=(n2)σ2/(n2)=σ2
    说明是 σ 2 \sigma^2 σ2的无偏估计。

    高斯-马尔可夫定理

    在给定经典假设下,OLS估计量是最优线性无偏估计量。
    • 无偏
      β ^ 1 = ∑ x i y i ∑ x i 2 = ∑ x i ∑ x i 2 Y i = ∑ k i Y i = ∑ k i ( β 0 + β 1 X i + μ i ) \hat\beta_1=\frac{\sum x_iy_i}{\sum x_i^2}=\sum \frac{x_i}{\sum x_i^2}Y_i\\=\sum k_iY_i=\sum k_i(\beta_0+\beta_1 X_i+\mu_i) β^1=xi2xiyi=xi2xiYi=kiYi=ki(β0+β1Xi+μi)
      其中 k i = x i / ∑ x i 2 k_i=x_i/\sum x_i^2 ki=xi/xi2,有如下性质:
      ∑ k i = 0 \sum k_i=0 ki=0;
      ∑ k i X i = ∑ k i x i = 1 \sum k_iX_i=\sum k_ix_i=1 kiXi=kixi=1

      E ( β ^ 1 ) = E ∑ k i β 0 + E ∑ k i X i β 1 + E ∑ k i μ i = β 1 E(\hat \beta_1)=E\sum k_i\beta_0+E\sum k_iX_i\beta_1+E\sum k_i\mu_i=\beta_1 E(β^1)=Ekiβ0+EkiXiβ1+Ekiμi=β1
      β ^ 1 \hat\beta_1 β^1 β 1 \beta_1 β1的无偏估计量。
      β ^ 0 = Y ‾ − ∑ k i Y i X ‾ = β 0 + β 1 X ‾ − X ‾ ∑ k i ( β 0 + β 1 X i + μ i ) = β 0 + β 1 X ‾ − X ‾ β 1 − X ‾ ∑ k i μ i = β 0 − X ‾ ∑ k i μ i \hat\beta_0=\overline Y-\sum k_i Y_i \overline X=\beta_0+\beta_1 \overline X-\overline X\sum k_i(\beta_0+\beta_1X_i+\mu_i)\\=\beta_0+\beta_1 \overline X-\overline X\beta_1-\overline X\sum k_i\mu_i\\=\beta_0-\overline X\sum k_i\mu_i β^0=YkiYiX=β0+β1XXki(β0+β1Xi+μi)=β0+β1XXβ1Xkiμi=β0Xkiμi
      取期望
      E ( β ^ 0 ) = β 0 + E ( X ‾ ∑ k i μ i ) = β 0 E(\hat\beta_0)=\beta_0+E(\overline X\sum k_i\mu_i)=\beta_0 E(β^0)=β0+E(Xkiμi)=β0
      β ^ 0 \hat\beta_0 β^0也是 β 0 \beta_0 β0的无偏估计。
    • 有效
      设另一估计量
      β 1 ∗ = ∑ w i Y i \beta_1^*=\sum w_iY_i β1=wiYi
      期望为 E ( β 1 ∗ ) = β 0 ∑ w i + β 1 ∑ w i X i E(\beta_1^*)=\beta_0\sum w_i+\beta_1\sum w_i X_i E(β1)=β0wi+β1wiXi
      若想无偏,必须有
      ∑ w i = 0 \sum w_i=0 wi=0;
      ∑ w i X i = ∑ w i x i = 1 \sum w_iX_i=\sum w_i x_i=1 wiXi=wixi=1;
      方差为
      v a r ( β 1 ∗ ) = ∑ w i 2 v a r ( Y i ) = σ 2 ∑ [ ( w i − k i ) + k i ] 2 = σ 2 ∑ [ ( w i − k i ) 2 + k i 2 − 2 ( w i k i − k i 2 ) ] = σ 2 ( w i − k i ) 2 + σ 2 1 ∑ x i 2 var(\beta_1^*)=\sum w_i^2 var(Y_i)\\=\sigma^2\sum [(w_i-k_i)+k_i]^2=\sigma^2\sum[(w_i-k_i)^2+k_i^2-2(w_ik_i-k_i^2)] \\=\sigma^2(w_i-k_i)^2+\sigma^2\frac{1}{\sum x_i^2} var(β1)=wi2var(Yi)=σ2[(wiki)+ki]2=σ2[(wiki)2+ki22(wikiki2)]=σ2(wiki)2+σ2xi21
      只有当 w i = k i w_i=k_i wi=ki时,方差才最小。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值