换入换出(Swap In & Swap Out)是风控策略分析中非常重要的一种方法。在新策略替换旧策略或者新模型替换旧模型时,都会遇到客群置换的问题。不论是模型开发还是策略分析,都需要熟练掌握换入换出分析,使得新策略(新模型)产生最大的业务价值。
1 什么是换入和换出?
2 如何应用换入换出分析?
3 客群置换实验设计思路
4 使用creditmodel进行换入换出分析
1 什么是换入和换出?
如果我们对信用评分模型进行了迭代,那就面临如何用新模型替换旧模型的问题。新旧模型替换涉及到策略修改,就必须评估策略变化所导致的业务影响,这样才能使得新策略或新模型的业务价值最大化,并避免由于策略修改所带来的风险。那么,如何评估由于新旧模型替换对业务的影响呢?这就需要做换入换出分析。
所谓换入(Swap in)是新策略准入而旧策略拒绝的客群,换出(Swap out) 是新策略拒绝而旧策略准入的客群,一般情况下,我们期望换入一组好账户,换出一组坏账户,或者换入更多的好账户,从而用好账户代替旧账户,从而降低整体的坏账率。
但是,降低坏账率可能只是我们做换入换出的其中一个目标。我们优化策略,往往是以利润最大化为目标,或者要匹配当前的业务战略:规模收缩还是扩张?风险保守还是激进?所以,我们往往会根据不同的目标(批核率、风险、响应率、利润)来进行换入换出分析。
在风险不变的情况下,批核率提升(换入更多比例的好账户)
在批核率不变的情况下,坏账率下降(换出更多比例的坏账户)
批核率和坏账率不变,客户的响应率提升或放款量增加(置换进来响应率更高的客户)
批核率提升和风险下降、响应率提升, 利润提升(置换进来LTV更高的客户)
风控的业务目标不应只是减低损失,而应该是在利润最大化的前提下尽力避免损失或坏账风险。我们业务稳定发展的情况下,利润最大化是比减少坏账更合理的业务目标。
2 如何应用换入换出分析?
对于准入类策略,我们会重点关注新策略相对于现有策略带来的通过率和坏账率的变化,这两者影响着产品的几项重要的变动成本—数据成本、营销成本和风险成本,从而影响着最终的产品收益。
如下表所示:在现有策略下坏账率为8.3%,通过率为38%,新策略分别换入(新策略通过、但旧策略会拒绝)和换出(新策略拒绝,旧策略会通过)4%的账户,新策略的通过率还是维持在38%,但换入账户的坏账率为6%,换出的账户坏账率为27%。这样,新策略替换旧策略,可以在通过率保持不变的情况下,使得坏账率由8.3%下降到5.3%。
我们进一步可以分析新旧策略替换对授信件均、金额逾期率、借款转化率以及对最终产品的平均客单收益的影响。
客群经过换入换出之后,则会产生新的授信客群:旧客群 = A + B, 新客群 = B + C,其中B为all in 客群,A为swap out 客群,C为swap in 客群。
对于A和B来说,我们有历史数据可以为之较为准确地评估新旧策略替换所带来的影响。
如果之前我们采取过 Universe Test,我们也会有一部分C客户准入,这样就有C的历史数据,则可以较为准确地评估C客群。
如果之前我们没有采取过Universe Test,则C客群从未准入过,我们没有C的历史数据,只能粗略地对swap in 客群进行估算,一个比较常用的方法,就是使用新模型对C客群(swap in population)进行排序后,去对应相同分数段的客群历史数据,对C客群进行评估。
3 客群置换实验设计思路
假设我们当前的准入策略只有一条基于风险模型的策略,策略很简单,拒绝模型分数低的高风险客群,让模型分数高于cutoff阈值的中低风险客群通过。
假如新开发了一个转化意愿模型,准备将其加入到当前策略中。我们经过细致的分析,发现风险评分较低,转化意愿评分低的这类客户可能是被策略被误拒的客群,这部分客户之所以在之前的放款客群中风险较高(从而给了较低的风险评分),主要有两个假设:一是准入策略不合理导致这部分客群大多在准入环节被误拒,二是给这部分客群的权益策略不合理(额度低,定价高),而发生了逆向选择。我们也发现,风险评分中等,转化意愿高的客群,给我们带来了重大损失。
因此对风控准入策略进行调整,换入风险评分低,转化意愿评分低的客群,换出风险评分中等,但转化意愿高的客群。
当然,在实际业务中,我们不会这么简单粗暴,在换入转化意愿低的客群的同时,也会伴随着权益策略的调整,以提升这部分客群的转化率,产生更大收益。
如果我们之前并没有做Universe Test,从而并没有转化意愿低,风险模型分数低的客群实际历史表现数据,只能通过转化意愿低的客群的历史数据去预估这部分客群的表现。
未完待续~~~~~~~~~或者关注汉森定理公众号。
都看到这里了,请双击屏幕再走吧!
【历史文章推荐】
汉森定理:基于交叉表(列联表)的风控规则生成方法
汉森定理:决策树算法原理以及决策树规则生成方法
汉森定理:模型自动化调参——基于R语言creditmodel包
汉森定理:R语言creditmodel包:快速构建信用评分模型
汉森定理:机器学习二分类模型几种效果评估方法的可视化(一)
汉森定理:全面了解消费金融业务指标体系—(一)资产质量分析
credtimodel是汉森老师开发的一个R语言数据科学工具包,有数据预处理、变量衍生、数据分析、数据可视化、自动化建模五大功能模块,已经发布接近两年时间。
汉森定理(hansenmode)公众号是我的个人公众号,会定期分享风控策略、数据分析、风控建模的相关知识,欢迎关注。