熟练掌握风控策略的换入换出(Swap Out & Swap In)分析

换入换出(Swap In & Swap Out)是风控策略分析中非常重要的一种方法。在新策略替换旧策略或者新模型替换旧模型时,都会遇到客群置换的问题。不论是模型开发还是策略分析,都需要熟练掌握换入换出分析,使得新策略(新模型)产生最大的业务价值。

1 什么是换入和换出?
2 如何应用换入换出分析?
3 客群置换实验设计思路
4 使用creditmodel进行换入换出分析

1 什么是换入和换出?
如果我们对信用评分模型进行了迭代,那就面临如何用新模型替换旧模型的问题。新旧模型替换涉及到策略修改,就必须评估策略变化所导致的业务影响,这样才能使得新策略或新模型的业务价值最大化,并避免由于策略修改所带来的风险。那么,如何评估由于新旧模型替换对业务的影响呢?这就需要做换入换出分析。

所谓换入(Swap in)是新策略准入而旧策略拒绝的客群,换出(Swap out) 是新策略拒绝而旧策略准入的客群,一般情况下,我们期望换入一组好账户,换出一组坏账户,或者换入更多的好账户,从而用好账户代替旧账户,从而降低整体的坏账率。

但是,降低坏账率可能只是我们做换入换出的其中一个目标。我们优化策略,往往是以利润最大化为目标,或者要匹配当前的业务战略:规模收缩还是扩张?风险保守还是激进?所以,我们往往会根据不同的目标(批核率、风险、响应率、利润)来进行换入换出分析。

在风险不变的情况下,批核率提升(换入更多比例的好账户)
在批核率不变的情况下,坏账率下降(换出更多比例的坏账户)
批核率和坏账率不变,客户的响应率提升或放款量增加(置换进来响应率更高的客户)
批核率提升和风险下降、响应率提升, 利润提升(置换进来LTV更高的客户)
风控的业务目标不应只是减低损失,而应该是在利润最大化的前提下尽力避免损失或坏账风险。我们业务稳定发展的情况下,利润最大化是比减少坏账更合理的业务目标。

2 如何应用换入换出分析?
对于准入类策略,我们会重点关注新策略相对于现有策略带来的通过率和坏账率的变化,这两者影响着产品的几项重要的变动成本—数据成本、营销成本和风险成本,从而影响着最终的产品收益。

如下表所示:在现有策略下坏账率为8.3%,通过率为38%,新策略分别换入(新策略通过、但旧策略会拒绝)和换出(新策略拒绝,旧策略会通过)4%的账户,新策略的通过率还是维持在38%,但换入账户的坏账率为6%,换出的账户坏账率为27%。这样,新策略替换旧策略,可以在通过率保持不变的情况下,使得坏账率由8.3%下降到5.3%。

在这里插入图片描述

我们进一步可以分析新旧策略替换对授信件均、金额逾期率、借款转化率以及对最终产品的平均客单收益的影响。

客群经过换入换出之后,则会产生新的授信客群:旧客群 = A + B, 新客群 = B + C,其中B为all in 客群,A为swap out 客群,C为swap in 客群。

对于A和B来说,我们有历史数据可以为之较为准确地评估新旧策略替换所带来的影响。

如果之前我们采取过 Universe Test,我们也会有一部分C客户准入,这样就有C的历史数据,则可以较为准确地评估C客群。

在这里插入图片描述

如果之前我们没有采取过Universe Test,则C客群从未准入过,我们没有C的历史数据,只能粗略地对swap in 客群进行估算,一个比较常用的方法,就是使用新模型对C客群(swap in population)进行排序后,去对应相同分数段的客群历史数据,对C客群进行评估。

3 客群置换实验设计思路
假设我们当前的准入策略只有一条基于风险模型的策略,策略很简单,拒绝模型分数低的高风险客群,让模型分数高于cutoff阈值的中低风险客群通过。

假如新开发了一个转化意愿模型,准备将其加入到当前策略中。我们经过细致的分析,发现风险评分较低,转化意愿评分低的这类客户可能是被策略被误拒的客群,这部分客户之所以在之前的放款客群中风险较高(从而给了较低的风险评分),主要有两个假设:一是准入策略不合理导致这部分客群大多在准入环节被误拒,二是给这部分客群的权益策略不合理(额度低,定价高),而发生了逆向选择。我们也发现,风险评分中等,转化意愿高的客群,给我们带来了重大损失。

因此对风控准入策略进行调整,换入风险评分低,转化意愿评分低的客群,换出风险评分中等,但转化意愿高的客群。

当然,在实际业务中,我们不会这么简单粗暴,在换入转化意愿低的客群的同时,也会伴随着权益策略的调整,以提升这部分客群的转化率,产生更大收益。
在这里插入图片描述

如果我们之前并没有做Universe Test,从而并没有转化意愿低,风险模型分数低的客群实际历史表现数据,只能通过转化意愿低的客群的历史数据去预估这部分客群的表现。

未完待续~~~~~~~~~或者关注汉森定理公众号。

都看到这里了,请双击屏幕再走吧!

【历史文章推荐】
汉森定理:基于交叉表(列联表)的风控规则生成方法
汉森定理:决策树算法原理以及决策树规则生成方法
汉森定理:模型自动化调参——基于R语言creditmodel包
汉森定理:R语言creditmodel包:快速构建信用评分模型
汉森定理:机器学习二分类模型几种效果评估方法的可视化(一)
汉森定理:全面了解消费金融业务指标体系—(一)资产质量分析

credtimodel是汉森老师开发的一个R语言数据科学工具包,有数据预处理、变量衍生、数据分析、数据可视化、自动化建模五大功能模块,已经发布接近两年时间。
在这里插入图片描述

汉森定理(hansenmode)公众号是我的个人公众号,会定期分享风控策略、数据分析、风控建模的相关知识,欢迎关注。

### Swap InSwap Out 的概念 Swap InSwap Out 是操作系统内存管理中的一种重要机制,主要用于处理物理内存不足的情况。通过这种机制,可以将暂时不需要的页面或整个进程地址空间移动到外部存储设备上(通常是硬盘上的交换分区),以便腾出更多可用的物理内存给其他更活跃的任务。 #### 换出(Swap Out) 当系统的物理内存量不足以满足当前运行的所有进程需求时,会选择一些不太可能立即被访问的数据或者完整的进程映像写回到磁盘上的特定区域——即所谓的“交换区”。这个过程被称为换出操作[^1]。具体而言: - **选择对象**:通常基于某些算法决定哪些部分应该被移除;例如最近最少使用(LRU)策略可能会优先考虑那些长时间未被触及的内容。 - **保存位置**:选定的对象会被复制至预先分配好的磁盘空间里作为临时存放地点直到它们再次变得必要为止。 ```bash # 这是一个简单的命令行工具top, 可以查看系统中各个进程的状态以及swap情况 $ top -b -n 1 | grep "KiB" ``` #### 换入(Swap In) 一旦之前被移到磁盘上的数据现在又成为了急需使用的资源,则需要将其重新加载回RAM之中完成一次换入动作。这同样涉及到两个主要方面的工作: - **查找并读取**: 需要定位正确的文件路径并且从中提取所需的信息片段带回主存当中准备随时调用。 - **恢复上下文环境**: 如果是针对某个具体的程序实例所做的调整那么还需要确保其能够顺利接续之前的执行流程而不至于造成混乱局面的发生。 ```c // C语言模拟swap in的过程伪代码 void swap_in(Process *process){ // 假设已经找到了对应的磁盘块号disk_block_number read_from_disk(disk_block_number, process->memory_address); } ``` 在现代计算机体系结构下,尤其是Linux/Unix类平台,除了上述提到的整体性的进程级别的交换之外还存在更为精细粒度的操作单元—页面(Page),也就是常说的页交换机制。它允许只对单个虚拟内存页而不是整个工作集实施迁移活动从而提高了效率降低了开销[^2]。 对于大型应用程序来说,在启动阶段往往占用较多的一次性初始化所需的大量内存资源,而在后续正常运作期间却不再频繁涉及这部分内容。借助于swap功能可以把这类不常用的数据迁移到辅助储存器上去进而节省宝贵的随机访问内存容量让其余更重要的任务得到更好的支持和服务质量保障[^3]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值