大话 - 自编码(Autoencoder)和变分自编码(Variational Autoencoder)

本文探讨了自编码器和变分自编码器的区别及其应用,重点在于变分自编码器如何学习隐层变量的分布以生成类似原始数据的新样本。通过Pytorch展示了网络结构、前向传播、损失函数和训练过程,揭示了在隐层加入随机噪声以捕获输入数据特性的关键步骤。
摘要由CSDN通过智能技术生成

因为最近在研究自编码和变分自编码的区别,以及应用方向,现在总结内容和大家分享一下。

自编码 (Autoencoder)

自编码(Autoencoder)在降维算法普遍被认可的一种算法,算法的主要出发点:如果有个网络,你将数据输入(N维),可以是图片或者其他特征,然后网络吐出了相同的数据,那么我们是否可以认为网络的某些隐层特点(输出, M维)可以代表你的输入数据特点?—- 因为基于这个隐层输出,网络又重新输出了原始数据。

基于这个想法,普遍的网络设置,都是将隐层设置成一个低维(M << N), 然后将损失函数 (Loss function)设置成原始输入和输出的diff。

这里将用mnist手写数字图片数据作为一个代码样例说明, 这里我们简单将代码逻辑分几个部分进行串行讲解:

  1. 网络结构
  2. 前向数据流 (forward)
  3. 损失函数 (loss function) & 优化器 (optimizer)
  4. 训练 & 梯度下降

数据简单介绍 28 * 28维图片,图片pixel值[0, 1],图片内容1 - 9, 知道了输入纬度,咱们直接来设置网络结构 (比如我们想将 28 * 28 降维到 64维)

网络结构
class AutoEncoder(nn.Module):
    """
    """
    def __init__(self, latent_num=16):
        """
        TODO: doconvolution
        """
        super(AutoEncoder, self).__init__()

        self.fc1 = nn.Linear(IMG_SIZE, 256)
        self.fc1.weight.data.normal_(0.0, 0.05)

        self.fc2 = nn.Linear(256, 64)
        self.fc2.weight.data.normal_(0.0, 0.05)

        self.fc3 = nn.Linear(64, 256)
        self.fc3.weight.data.normal_(0.0, 0.05)

        self.fc4 = nn.Linear(256, IMG_SIZE)
        self.fc4.weight.data.normal_(0.0, 0.05)
前向数据流 (forward)

有了网络结构,我们还需要将网络数据流串联起来,这个过程普遍成为forward,

    
  • 4
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值