洛必达法则具体如下:
如有:
lim
x
→
a
f
(
x
)
=
0
,
lim
x
→
a
g
(
x
)
=
0
o
r
lim
x
→
a
f
(
x
)
=
∞
,
lim
x
→
a
g
(
x
)
=
∞
\lim _{x \rightarrow a} f(x)=0, \lim _{x \rightarrow a} g(x)=0 \;\;\mathrm{or}\;\; \lim _{x \rightarrow a} f(x)=\infty, \lim _{x \rightarrow a} g(x)=\infty
x→alimf(x)=0,x→alimg(x)=0orx→alimf(x)=∞,x→alimg(x)=∞
则有(默认邻域内可导:
lim
x
→
a
f
(
x
)
g
(
x
)
=
lim
x
→
a
f
′
(
x
)
g
′
(
x
)
=
A
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=A
x→alimg(x)f(x)=x→alimg′(x)f′(x)=A
证明: 先考虑
lim
x
→
a
f
(
x
)
=
0
,
lim
x
→
a
g
(
x
)
=
0
\lim _{x \rightarrow a} f(x)=0, \lim _{x \rightarrow a} g(x)=0
limx→af(x)=0,limx→ag(x)=0. 即:
f
(
a
)
=
g
(
a
)
=
0
f(a)=g(a)=0
f(a)=g(a)=0
根据柯西中值定理,存在
m
m
m为
(
a
,
x
)
(a,x)
(a,x)间一点, 有:
f
(
x
)
g
(
x
)
=
f
(
x
)
−
f
(
a
)
g
(
x
)
−
g
(
a
)
=
f
′
(
m
)
g
′
(
m
)
\frac{f(x)}{g(x)}=\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f^\prime(m)}{g^\prime (m)}
g(x)f(x)=g(x)−g(a)f(x)−f(a)=g′(m)f′(m)
令
x
→
a
x\rightarrow a
x→a, 此时
m
→
a
m\rightarrow a
m→a, 得到:
lim
x
→
a
f
(
x
)
g
(
x
)
=
lim
x
→
a
f
′
(
x
)
g
′
(
x
)
.
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a}\frac{f^\prime(x)}{g^\prime (x)}.
x→alimg(x)f(x)=x→alimg′(x)f′(x).
接下来考虑
lim
x
→
a
f
(
x
)
=
∞
,
lim
x
→
a
g
(
x
)
=
∞
\lim _{x \rightarrow a} f(x)=\infty, \lim _{x \rightarrow a} g(x)=\infty
limx→af(x)=∞,limx→ag(x)=∞, 我们首先有:
f
(
x
)
g
(
x
)
=
1
g
(
x
)
1
f
(
x
)
\frac{f(x)}{g(x)}=\frac{\frac{1}{g(x)}}{\frac{1}{f(x)}}
g(x)f(x)=f(x)1g(x)1,
显然当
x
→
a
x \rightarrow a
x→a时, 分子分母都趋近于0, 因此根据刚证明的结论,有:
lim
x
→
a
1
g
(
x
)
1
f
(
x
)
=
lim
x
→
a
(
1
g
(
x
)
)
′
(
1
f
(
x
)
)
′
=
lim
x
→
a
−
1
g
(
x
)
2
g
(
x
)
′
−
1
f
(
x
)
2
f
(
x
)
′
=
lim
x
→
a
1
g
2
(
x
)
1
f
2
(
x
)
lim
x
→
a
g
(
x
)
′
f
(
x
)
′
\lim _{x \rightarrow a}\frac{\frac{1}{g(x)}}{\frac{1}{f(x)}}=\lim _{x \rightarrow a}\frac{(\frac{1}{g(x)})^\prime}{(\frac{1}{f(x)})^\prime}=\lim _{x \rightarrow a}\frac{-\frac{1}{g(x)^2}g(x)^\prime}{-\frac{1}{f(x)^2}f(x)^\prime}=\lim _{x \rightarrow a}\frac{\frac{1}{g^2(x)}}{\frac{1}{f^2(x)}}\lim _{x \rightarrow a}\frac{g(x)^\prime}{f(x)^\prime}
x→alimf(x)1g(x)1=x→alim(f(x)1)′(g(x)1)′=x→alim−f(x)21f(x)′−g(x)21g(x)′=x→alimf2(x)1g2(x)1x→alimf(x)′g(x)′,
两边都除以
t
2
t^2
t2,
t
=
lim
x
→
a
1
g
(
x
)
1
f
(
x
)
t=\lim _{x \rightarrow a}\frac{\frac{1}{g(x)}}{\frac{1}{f(x)}}
t=limx→af(x)1g(x)1, 有:
lim
x
→
a
g
(
x
)
f
(
x
)
=
lim
x
→
a
g
(
x
)
′
f
(
x
)
′
\lim_{x \rightarrow a}\frac{g(x)}{f(x)}=\lim _{x \rightarrow a}\frac{g(x)^\prime}{f(x)^\prime}
x→alimf(x)g(x)=x→alimf(x)′g(x)′
证毕。