洛必达法则的一种极简证明

洛必达法则具体如下:
如有:
lim ⁡ x → a f ( x ) = 0 , lim ⁡ x → a g ( x ) = 0      o r      lim ⁡ x → a f ( x ) = ∞ , lim ⁡ x → a g ( x ) = ∞ \lim _{x \rightarrow a} f(x)=0, \lim _{x \rightarrow a} g(x)=0 \;\;\mathrm{or}\;\; \lim _{x \rightarrow a} f(x)=\infty, \lim _{x \rightarrow a} g(x)=\infty xalimf(x)=0,xalimg(x)=0orxalimf(x)=,xalimg(x)=
则有(默认邻域内可导:
lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x → a f ′ ( x ) g ′ ( x ) = A \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=A xalimg(x)f(x)=xalimg(x)f(x)=A

证明: 先考虑 lim ⁡ x → a f ( x ) = 0 , lim ⁡ x → a g ( x ) = 0 \lim _{x \rightarrow a} f(x)=0, \lim _{x \rightarrow a} g(x)=0 limxaf(x)=0,limxag(x)=0. 即: f ( a ) = g ( a ) = 0 f(a)=g(a)=0 f(a)=g(a)=0
根据柯西中值定理,存在 m m m ( a , x ) (a,x) (a,x)间一点, 有:
f ( x ) g ( x ) = f ( x ) − f ( a ) g ( x ) − g ( a ) = f ′ ( m ) g ′ ( m ) \frac{f(x)}{g(x)}=\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f^\prime(m)}{g^\prime (m)} g(x)f(x)=g(x)g(a)f(x)f(a)=g(m)f(m)
x → a x\rightarrow a xa, 此时 m → a m\rightarrow a ma, 得到:
lim ⁡ x → a f ( x ) g ( x ) = lim ⁡ x → a f ′ ( x ) g ′ ( x ) . \lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a}\frac{f^\prime(x)}{g^\prime (x)}. xalimg(x)f(x)=xalimg(x)f(x).

接下来考虑 lim ⁡ x → a f ( x ) = ∞ , lim ⁡ x → a g ( x ) = ∞ \lim _{x \rightarrow a} f(x)=\infty, \lim _{x \rightarrow a} g(x)=\infty limxaf(x)=,limxag(x)=, 我们首先有:
f ( x ) g ( x ) = 1 g ( x ) 1 f ( x ) \frac{f(x)}{g(x)}=\frac{\frac{1}{g(x)}}{\frac{1}{f(x)}} g(x)f(x)=f(x)1g(x)1,
显然当 x → a x \rightarrow a xa时, 分子分母都趋近于0, 因此根据刚证明的结论,有:

lim ⁡ x → a 1 g ( x ) 1 f ( x ) = lim ⁡ x → a ( 1 g ( x ) ) ′ ( 1 f ( x ) ) ′ = lim ⁡ x → a − 1 g ( x ) 2 g ( x ) ′ − 1 f ( x ) 2 f ( x ) ′ = lim ⁡ x → a 1 g 2 ( x ) 1 f 2 ( x ) lim ⁡ x → a g ( x ) ′ f ( x ) ′ \lim _{x \rightarrow a}\frac{\frac{1}{g(x)}}{\frac{1}{f(x)}}=\lim _{x \rightarrow a}\frac{(\frac{1}{g(x)})^\prime}{(\frac{1}{f(x)})^\prime}=\lim _{x \rightarrow a}\frac{-\frac{1}{g(x)^2}g(x)^\prime}{-\frac{1}{f(x)^2}f(x)^\prime}=\lim _{x \rightarrow a}\frac{\frac{1}{g^2(x)}}{\frac{1}{f^2(x)}}\lim _{x \rightarrow a}\frac{g(x)^\prime}{f(x)^\prime} xalimf(x)1g(x)1=xalim(f(x)1)(g(x)1)=xalimf(x)21f(x)g(x)21g(x)=xalimf2(x)1g2(x)1xalimf(x)g(x),
两边都除以 t 2 t^2 t2, t = lim ⁡ x → a 1 g ( x ) 1 f ( x ) t=\lim _{x \rightarrow a}\frac{\frac{1}{g(x)}}{\frac{1}{f(x)}} t=limxaf(x)1g(x)1, 有:
lim ⁡ x → a g ( x ) f ( x ) = lim ⁡ x → a g ( x ) ′ f ( x ) ′ \lim_{x \rightarrow a}\frac{g(x)}{f(x)}=\lim _{x \rightarrow a}\frac{g(x)^\prime}{f(x)^\prime} xalimf(x)g(x)=xalimf(x)g(x)

证毕。

### 使用Python实现洛必达法则的演示 为了展示洛必达法则的应用,可以利用SymPy库来进行限运算以及导数计算。通过构建两个函数并应用洛必达法则来解决不定型问题。 考虑两个连续可导函数$f(x)$和$g(x)$,当$x \to a$时都趋向于0或无穷大,则有: $$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a}\frac{f'(x)}{g'(x)},$$ 如果右侧存在的话[^1]。 下面是具体的Python代码示例,该例子展示了如何使用洛必达法则求解$\lim _{x \rightarrow 0}{\sin (x)}/{x}$的形式未定式的限值: ```python import sympy as sp # 定义符号变量 x = sp.symbols('x') # 定义分子分母函数 numerator_function = sp.sin(x) denominator_function = x # 初始表达式 original_expression = numerator_function / denominator_function print("原始表达式:", original_expression) # 对分子分母分别求导 df_numerator = sp.diff(numerator_function, x) df_denominator = sp.diff(denominator_function, x) # 构建新的表达式即导数比 new_expression = df_numerator / df_denominator print("\n应用洛必达法则后的表达式:") sp.pprint(new_expression) # 计算原表达式与新表达式的限值作为对比 limit_original = sp.limit(original_expression, x, 0) limit_new = sp.limit(new_expression, x, 0) print(f"\n原始表达式的限值为: {limit_original}") print(f"应用洛必达法则后的新表达式的限值为: {limit_new}") ``` 上述程序首先定义了一个形式上的未定式${\sin (x)}/{x}$,接着对其进行了两次不同的操作:一次是对这个比例直接取限;另一次则是先对该比例运用了洛必达法则再取限。最终两者的结果应该相同,以此验证了洛必达法则的有效性[^2]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B417科研笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值