定理1 设
(1)当 x → a x \to a x→a 时,函数 f ( x ) f(x) f(x) 及 F ( x ) F(x) F(x) 都趋于零;
(2)在点 a a a 的某去心邻域内, f ′ ( x ) f^{'}(x) f′(x) 及 F ′ ( x ) F^{'}(x) F′(x) 都存在且 F ′ ( x ) ≠ 0 F^{'}(x) \neq 0 F′(x)=0 ;
(3) lim x → a f ′ ( x ) F ′ ( x ) \lim \limits_{x \to a} \cfrac{f^{'}(x)}{F^{'}(x)} x→alimF′(x)f′(x) 存在(或为无穷大),
则
lim x → a f ( x ) F ( x ) = lim x → a f ′ ( x ) F ′ ( x ) . \lim_{x \to a} \cfrac{f(x)}{F(x)} = \lim_{x \to a} \cfrac{f^{'}(x)}{F^{'}(x)} . x→alimF(x)f(x)=x→alimF′(x)f′(x).
这就是说。当 lim x → a f ′ ( x ) F ′ ( x ) \lim \limits_{x \to a} \cfrac{f^{'}(x)}{F^{'}(x)} x→alimF′(x)f′(x) 存在时, lim x → a f ( x ) F ( x ) \lim \limits_{x \to a} \cfrac{f(x)}{F(x)} x→alimF(x)f(x) 也存在且等于 lim x → a f ′ ( x ) F ′ ( x ) \lim \limits_{x \to a} \cfrac{f^{'}(x)}{F^{'}(x)} x→alimF′(x)f′(x) ;当 lim x → a f ′ ( x ) F ′ ( x ) \lim \limits_{x \to a} \cfrac{f^{'}(x)}{F^{'}(x)} x→alimF′(x)f′(x) 为无穷大时, lim x → a f ( x ) F ( x ) \lim \limits_{x \to a} \cfrac{f(x)}{F(x)} x→alimF(x)f(x) 也是无穷大。这种在一定条件下通过分子、分母分别求导再求极限来确定未定式的值的方法称为 洛必达(L’Hospital)法则 。
洛必达法则的证明见下图:
如果
f
′
(
x
)
F
′
(
x
)
\cfrac{f^{'}(x)}{F^{'}(x)}
F′(x)f′(x) 当
x
→
a
x \to a
x→a 时仍属
0
0
\cfrac{0}{0}
00 型,且这时
f
′
(
x
)
,
F
′
(
x
)
f^{'}(x), F^{'}(x)
f′(x),F′(x) 能满足定理中
f
(
x
)
,
F
(
x
)
f(x), F(x)
f(x),F(x) 所要满足的条件,那么可以继续使用洛必达法则先确定
lim
x
→
a
f
′
(
x
)
F
′
(
x
)
\lim \limits_{x \to a} \cfrac{f^{'}(x)}{F^{'}(x)}
x→alimF′(x)f′(x) ,从而确定
lim
x
→
a
f
(
x
)
F
(
x
)
\lim \limits_{x \to a} \cfrac{f(x)}{F(x)}
x→alimF(x)f(x) ,即
lim
x
→
a
f
(
x
)
F
(
x
)
=
lim
x
→
a
f
′
(
x
)
F
′
(
x
)
=
lim
x
→
a
f
′
′
(
x
)
F
′
′
(
x
)
\lim_{x \to a} \cfrac{f(x)}{F(x)} = \lim_{x \to a} \cfrac{f^{'}(x)}{F^{'}(x)} = \lim_{x \to a} \cfrac{f^{''}(x)}{F^{''}(x)}
x→alimF(x)f(x)=x→alimF′(x)f′(x)=x→alimF′′(x)f′′(x)
例1 求
lim
x
→
0
sin
a
x
sin
b
x
(
b
≠
0
)
\lim \limits_{x \to 0} \cfrac{\sin ax}{\sin bx} (b \neq 0)
x→0limsinbxsinax(b=0) .
解:
lim
x
→
0
sin
a
x
sin
b
x
=
lim
x
→
0
a
cos
a
x
b
cos
b
x
=
a
b
\lim \limits_{x \to 0} \cfrac{\sin ax}{\sin bx} = \lim \limits_{x \to 0} \cfrac{a \cos ax}{b \cos bx} = \cfrac{a}{b}
x→0limsinbxsinax=x→0limbcosbxacosax=ba .
例2 求
lim
x
→
1
x
3
−
3
x
+
2
x
3
−
x
2
−
x
+
1
\lim \limits_{x \to 1} \cfrac{x^3 - 3x + 2}{x^3 - x^2 - x + 1}
x→1limx3−x2−x+1x3−3x+2 .
解:
lim
x
→
1
x
3
−
3
x
+
2
x
3
−
x
2
−
x
+
1
=
lim
x
→
1
3
x
2
−
3
3
x
2
−
2
x
−
1
=
lim
x
→
1
6
x
6
x
−
2
=
3
2
\lim \limits_{x \to 1} \cfrac{x^3 - 3x + 2}{x^3 - x^2 - x + 1} = \lim \limits_{x \to 1} \cfrac{3x^2 - 3}{3x^2 - 2x - 1} = \lim \limits_{x \to 1} \cfrac{6x}{6x - 2} = \cfrac{3}{2}
x→1limx3−x2−x+1x3−3x+2=x→1lim3x2−2x−13x2−3=x→1lim6x−26x=23 .
注意,上式中的 lim x → 1 6 x 6 x − 2 \lim \limits_{x \to 1} \cfrac{6x}{6x - 2} x→1lim6x−26x 已不是未定式,不能对它应用洛必达法则,否则要导致错误结果。如果不是未定式,那么就不能应用洛必达法则。
例3 求
lim
x
→
0
x
−
sin
x
x
3
\lim \limits_{x \to 0} \cfrac{x - \sin x}{x^3}
x→0limx3x−sinx .
解:
lim
x
→
0
x
−
sin
x
x
3
=
lim
x
→
0
1
−
cos
x
3
x
2
=
lim
x
→
0
sin
x
6
x
=
1
6
\lim \limits_{x \to 0} \cfrac{x - \sin x}{x^3} = \lim \limits_{x \to 0} \cfrac{1 - \cos x}{3x^2} = \lim \limits_{x \to 0} \cfrac{\sin x}{6x} = \cfrac{1}{6}
x→0limx3x−sinx=x→0lim3x21−cosx=x→0lim6xsinx=61
我们指出,对于 x → ∞ x \to \infty x→∞ 时的未定式 0 0 \cfrac{0}{0} 00 以及对于 x → a x \to a x→a 或 x → ∞ x \to \infty x→∞ 时的未定式 ∞ ∞ \cfrac{\infty}{\infty} ∞∞ ,也有相应的洛必达法则。
定理2 设
(1)当 x → ∞ x \to \infty x→∞ 时,函数 f ( x ) f(x) f(x) 及 F ( x ) F(x) F(x) 都趋于零;
(2)当 ∣ x ∣ > N |x| > N ∣x∣>N 时 f ′ ( x ) f^{'}(x) f′(x) 及 F ′ ( x ) F^{'}(x) F′(x) 都存在且 F ′ ( x ) ≠ 0 F^{'}(x) \neq 0 F′(x)=0 ;
(3) lim x → ∞ f ′ ( x ) F ′ ( x ) \lim \limits_{x \to \infty} \cfrac{f^{'}(x)}{F^{'}(x)} x→∞limF′(x)f′(x) 存在(或为无穷大),
则
lim x → ∞ f ( x ) F ( x ) = lim x → ∞ f ′ ( x ) F ′ ( x ) . \lim_{x \to \infty} \cfrac{f(x)}{F(x)} = \lim_{x \to \infty} \cfrac{f^{'}(x)}{F^{'}(x)} . x→∞limF(x)f(x)=x→∞limF′(x)f′(x).
例4 求
lim
x
→
+
∞
π
2
−
arctan
x
1
x
\lim \limits_{x \to +\infty} \cfrac{\frac{\pi}{2} - \arctan x}{\frac{1}{x}}
x→+∞limx12π−arctanx .
解:
lim
x
→
+
∞
π
2
−
arctan
x
1
x
=
lim
x
→
+
∞
−
1
1
−
x
2
−
1
x
2
=
lim
x
→
+
∞
x
2
1
+
x
2
=
1
\lim \limits_{x \to +\infty} \cfrac{\frac{\pi}{2} - \arctan x}{\frac{1}{x}} = \lim \limits_{x \to +\infty} \cfrac{- \frac{1}{1 - x^2}}{- \frac{1}{x^2}} = \lim \limits_{x \to +\infty} \cfrac{x^2}{1 + x^2} = 1
x→+∞limx12π−arctanx=x→+∞lim−x21−1−x21=x→+∞lim1+x2x2=1 .
例5 求
lim
x
→
+
∞
ln
x
x
n
(
n
>
0
)
\lim \limits_{x \to + \infty} \cfrac{\ln x}{x^n} (n > 0)
x→+∞limxnlnx(n>0) .
解:
lim
x
→
+
∞
ln
x
x
n
=
lim
x
→
+
∞
1
x
n
x
n
−
1
=
lim
x
→
+
∞
1
n
x
n
=
0
\lim \limits_{x \to + \infty} \cfrac{\ln x}{x^n} = \lim \limits_{x \to + \infty} \cfrac{\frac{1}{x}}{n x^{n - 1}} = \lim \limits_{x \to + \infty} \cfrac{1}{nx^n} = 0
x→+∞limxnlnx=x→+∞limnxn−1x1=x→+∞limnxn1=0 .
例6 求
lim
x
→
+
∞
x
n
e
λ
x
(
n
为正整数,
λ
>
0
)
\lim \limits_{x \to + \infty} \cfrac{x^n}{\mathrm{e}^{\lambda x}} (n为正整数, \lambda > 0)
x→+∞limeλxxn(n为正整数,λ>0) .
解:相继应用洛必达法则
n
n
n 次,得
lim
x
→
+
∞
x
n
e
λ
x
=
lim
x
→
+
∞
n
x
n
−
1
λ
e
λ
x
=
lim
x
→
+
∞
n
(
n
−
1
)
x
n
−
2
λ
2
e
λ
x
=
⋯
=
lim
x
→
+
∞
n
!
λ
n
e
λ
x
=
0.
\lim_{x \to + \infty} \cfrac{x^n}{\mathrm{e}^{\lambda x}} = \lim_{x \to + \infty} \cfrac{nx^{n - 1}}{\lambda \mathrm{e}^{\lambda x}} = \lim_{x \to + \infty} \cfrac{n(n - 1)x^{n - 2}}{\lambda^2 \mathrm{e}^{\lambda x}} = \cdots = \lim_{x \to + \infty} \cfrac{n!}{\lambda^n \mathrm{e}^{\lambda x}} = 0.
x→+∞limeλxxn=x→+∞limλeλxnxn−1=x→+∞limλ2eλxn(n−1)xn−2=⋯=x→+∞limλneλxn!=0.
其他还有一些 0 ⋅ ∞ 0 \cdot \infty 0⋅∞, ∞ − ∞ \infty - \infty ∞−∞, 0 0 0^0 00, 1 ∞ 1^{\infty} 1∞, ∞ 0 \infty^0 ∞0 型的未定式,也可通过 0 0 \cfrac{0}{0} 00 或 ∞ ∞ \cfrac{\infty}{\infty} ∞∞ 型的未定式来计算。
例7 求
lim
x
→
0
+
x
n
ln
x
(
n
>
0
)
\lim \limits_{x \to 0^+} x^n \ln x (n > 0)
x→0+limxnlnx(n>0) .
解:这是未定式
0
⋅
∞
0 \cdot \infty
0⋅∞ 。因为
x
n
ln
x
=
ln
x
1
x
n
,
x^n \ln x = \cfrac{\ln x}{\frac{1}{x^n}} ,
xnlnx=xn1lnx,
当
x
→
0
+
x \to 0^+
x→0+ 时,上式右端是未定式
∞
∞
\cfrac{\infty}{\infty}
∞∞ ,应用洛必达法则,得
lim
x
→
0
+
x
n
ln
x
=
lim
x
→
0
+
ln
x
x
−
n
=
lim
x
→
0
+
1
x
−
n
x
−
n
−
1
=
lim
x
→
0
+
(
−
x
n
n
)
=
0.
\lim_{x \to 0^+} x^n \ln x = \lim_{x \to 0^+} \cfrac{\ln x}{x^{-n}} = \lim_{x \to 0^+} \cfrac{\frac{1}{x}}{-n x^{-n - 1}} = \lim_{x \to 0^+} \left( \cfrac{-x^n}{n} \right) = 0.
x→0+limxnlnx=x→0+limx−nlnx=x→0+lim−nx−n−1x1=x→0+lim(n−xn)=0.
例8 求
lim
x
→
π
2
(
sec
x
−
tan
x
)
\lim \limits_{x \to \frac{\pi}{2}} (\sec x - \tan x)
x→2πlim(secx−tanx) .
解:这是未定式
∞
−
∞
\infty - \infty
∞−∞ 。因为
sec
x
−
tan
x
=
1
−
sin
x
cos
x
,
\sec x - \tan x = \cfrac{1 - \sin x}{\cos x} ,
secx−tanx=cosx1−sinx,
当
x
→
π
2
x \to \cfrac{\pi}{2}
x→2π 时,上式右端是未定式
0
0
\cfrac{0}{0}
00 ,应用洛必达法则,得
lim
x
→
π
2
(
sec
x
−
tan
x
)
=
lim
x
→
π
2
1
−
sin
x
cos
x
=
lim
x
→
π
2
−
cos
x
−
sin
x
=
0.
\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x) = \lim_{x \to \frac{\pi}{2}} \cfrac{1 - \sin x}{\cos x} = \lim_{x \to \frac{\pi}{2}} \cfrac{- \cos x}{- \sin x} = 0.
x→2πlim(secx−tanx)=x→2πlimcosx1−sinx=x→2πlim−sinx−cosx=0.
例9 求
lim
x
→
0
+
x
x
\lim \limits_{x \to 0^+} x^x
x→0+limxx .
解:这是未定式
0
0
0^0
00 。设
y
=
x
x
y = x^x
y=xx ,两端取对数得
ln
y
=
x
ln
x
,
\ln y = x \ln x ,
lny=xlnx,
当
x
→
0
+
x \to 0^+
x→0+ 时,上式右端是未定式
0
⋅
∞
0 \cdot \infty
0⋅∞ ,应用例7的结果,得
lim
x
→
0
+
ln
y
=
lim
x
→
0
+
(
x
ln
x
)
=
0
,
\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} (x \ln x) = 0 ,
x→0+limlny=x→0+lim(xlnx)=0,
因为
y
=
e
ln
y
y = \mathrm{e}^{\ln y}
y=elny ,而
lim
y
=
lim
e
ln
y
=
e
lim
ln
y
(
当
x
→
0
+
)
\lim y = \lim \mathrm{e}^{\ln y} = \mathrm{e}^{\lim \ln y} (当 x \to 0^+)
limy=limelny=elimlny(当x→0+) ,所以
lim
x
→
0
+
x
x
=
lim
x
→
0
+
y
=
e
0
=
1.
\lim_{x \to 0^+} x^x = \lim_{x \to 0^+} y = \mathrm{e}^0 = 1 .
x→0+limxx=x→0+limy=e0=1.
例10 求
lim
x
→
0
tan
x
−
x
x
2
sin
x
\lim \limits_{x \to 0} \cfrac{\tan x - x}{x^2 \sin x}
x→0limx2sinxtanx−x .
解:如果直接用洛必达法则,那么分母的导数(尤其是高阶导数)较繁,如果做一个等价无穷小替换,那么运算就方便得多。
lim
x
→
0
tan
x
−
x
x
2
sin
x
=
lim
x
→
0
tan
x
−
x
x
3
=
lim
x
→
0
sec
2
x
−
1
3
x
2
=
lim
x
→
0
2
sec
2
x
tan
x
6
x
=
1
3
lim
x
→
0
tan
x
x
=
1
3
.
\lim_{x \to 0} \cfrac{\tan x - x}{x^2 \sin x} = \lim_{x \to 0} \cfrac{\tan x - x}{x^3} = \lim_{x \to 0} \cfrac{\sec^2 x - 1}{3x^2} = \lim_{x \to 0} \cfrac{2 \sec^2 x \tan x}{6x} = \cfrac{1}{3} \lim_{x \to 0} \cfrac{\tan x}{x} = \cfrac{1}{3} .
x→0limx2sinxtanx−x=x→0limx3tanx−x=x→0lim3x2sec2x−1=x→0lim6x2sec2xtanx=31x→0limxtanx=31.
当满足定理条件时,所求的极限当然存在(或为 ∞ \infty ∞) lim f ′ ( x ) F ′ ( x ) \lim \cfrac{f^{'}(x)}{F^{'}(x)} limF′(x)f′(x) 不存在时(等于无穷大的情况除外), lim f ( x ) F ( x ) \lim \cfrac{f(x)}{F(x)} limF(x)f(x) 仍可能存在。
原文链接:高等数学 3.2 洛必达法则