高等数学 3.2 洛必达法则

定理1 设
(1)当 x → a x \to a xa 时,函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x) 都趋于零;
(2)在点 a a a 的某去心邻域内, f ′ ( x ) f^{'}(x) f(x) F ′ ( x ) F^{'}(x) F(x) 都存在且 F ′ ( x ) ≠ 0 F^{'}(x) \neq 0 F(x)=0
(3) lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim \limits_{x \to a} \cfrac{f^{'}(x)}{F^{'}(x)} xalimF(x)f(x) 存在(或为无穷大),

lim ⁡ x → a f ( x ) F ( x ) = lim ⁡ x → a f ′ ( x ) F ′ ( x ) . \lim_{x \to a} \cfrac{f(x)}{F(x)} = \lim_{x \to a} \cfrac{f^{'}(x)}{F^{'}(x)} . xalimF(x)f(x)=xalimF(x)f(x).

这就是说。当 lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim \limits_{x \to a} \cfrac{f^{'}(x)}{F^{'}(x)} xalimF(x)f(x) 存在时, lim ⁡ x → a f ( x ) F ( x ) \lim \limits_{x \to a} \cfrac{f(x)}{F(x)} xalimF(x)f(x) 也存在且等于 lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim \limits_{x \to a} \cfrac{f^{'}(x)}{F^{'}(x)} xalimF(x)f(x) ;当 lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim \limits_{x \to a} \cfrac{f^{'}(x)}{F^{'}(x)} xalimF(x)f(x) 为无穷大时, lim ⁡ x → a f ( x ) F ( x ) \lim \limits_{x \to a} \cfrac{f(x)}{F(x)} xalimF(x)f(x) 也是无穷大。这种在一定条件下通过分子、分母分别求导再求极限来确定未定式的值的方法称为 洛必达(L’Hospital)法则

洛必达法则的证明见下图:
洛必达法则证明

如果 f ′ ( x ) F ′ ( x ) \cfrac{f^{'}(x)}{F^{'}(x)} F(x)f(x) x → a x \to a xa 时仍属 0 0 \cfrac{0}{0} 00 型,且这时 f ′ ( x ) , F ′ ( x ) f^{'}(x), F^{'}(x) f(x),F(x) 能满足定理中 f ( x ) , F ( x ) f(x), F(x) f(x),F(x) 所要满足的条件,那么可以继续使用洛必达法则先确定 lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim \limits_{x \to a} \cfrac{f^{'}(x)}{F^{'}(x)} xalimF(x)f(x) ,从而确定 lim ⁡ x → a f ( x ) F ( x ) \lim \limits_{x \to a} \cfrac{f(x)}{F(x)} xalimF(x)f(x) ,即
lim ⁡ x → a f ( x ) F ( x ) = lim ⁡ x → a f ′ ( x ) F ′ ( x ) = lim ⁡ x → a f ′ ′ ( x ) F ′ ′ ( x ) \lim_{x \to a} \cfrac{f(x)}{F(x)} = \lim_{x \to a} \cfrac{f^{'}(x)}{F^{'}(x)} = \lim_{x \to a} \cfrac{f^{''}(x)}{F^{''}(x)} xalimF(x)f(x)=xalimF(x)f(x)=xalimF′′(x)f′′(x)

例1 求 lim ⁡ x → 0 sin ⁡ a x sin ⁡ b x ( b ≠ 0 ) \lim \limits_{x \to 0} \cfrac{\sin ax}{\sin bx} (b \neq 0) x0limsinbxsinax(b=0) .
解: lim ⁡ x → 0 sin ⁡ a x sin ⁡ b x = lim ⁡ x → 0 a cos ⁡ a x b cos ⁡ b x = a b \lim \limits_{x \to 0} \cfrac{\sin ax}{\sin bx} = \lim \limits_{x \to 0} \cfrac{a \cos ax}{b \cos bx} = \cfrac{a}{b} x0limsinbxsinax=x0limbcosbxacosax=ba .

例2 求 lim ⁡ x → 1 x 3 − 3 x + 2 x 3 − x 2 − x + 1 \lim \limits_{x \to 1} \cfrac{x^3 - 3x + 2}{x^3 - x^2 - x + 1} x1limx3x2x+1x33x+2 .
解: lim ⁡ x → 1 x 3 − 3 x + 2 x 3 − x 2 − x + 1 = lim ⁡ x → 1 3 x 2 − 3 3 x 2 − 2 x − 1 = lim ⁡ x → 1 6 x 6 x − 2 = 3 2 \lim \limits_{x \to 1} \cfrac{x^3 - 3x + 2}{x^3 - x^2 - x + 1} = \lim \limits_{x \to 1} \cfrac{3x^2 - 3}{3x^2 - 2x - 1} = \lim \limits_{x \to 1} \cfrac{6x}{6x - 2} = \cfrac{3}{2} x1limx3x2x+1x33x+2=x1lim3x22x13x23=x1lim6x26x=23 .

注意,上式中的 lim ⁡ x → 1 6 x 6 x − 2 \lim \limits_{x \to 1} \cfrac{6x}{6x - 2} x1lim6x26x 已不是未定式,不能对它应用洛必达法则,否则要导致错误结果。如果不是未定式,那么就不能应用洛必达法则。

例3 求 lim ⁡ x → 0 x − sin ⁡ x x 3 \lim \limits_{x \to 0} \cfrac{x - \sin x}{x^3} x0limx3xsinx .
解: lim ⁡ x → 0 x − sin ⁡ x x 3 = lim ⁡ x → 0 1 − cos ⁡ x 3 x 2 = lim ⁡ x → 0 sin ⁡ x 6 x = 1 6 \lim \limits_{x \to 0} \cfrac{x - \sin x}{x^3} = \lim \limits_{x \to 0} \cfrac{1 - \cos x}{3x^2} = \lim \limits_{x \to 0} \cfrac{\sin x}{6x} = \cfrac{1}{6} x0limx3xsinx=x0lim3x21cosx=x0lim6xsinx=61

我们指出,对于 x → ∞ x \to \infty x 时的未定式 0 0 \cfrac{0}{0} 00 以及对于 x → a x \to a xa x → ∞ x \to \infty x 时的未定式 ∞ ∞ \cfrac{\infty}{\infty} ,也有相应的洛必达法则。

定理2 设
(1)当 x → ∞ x \to \infty x 时,函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x) 都趋于零;
(2)当 ∣ x ∣ > N |x| > N x>N f ′ ( x ) f^{'}(x) f(x) F ′ ( x ) F^{'}(x) F(x) 都存在且 F ′ ( x ) ≠ 0 F^{'}(x) \neq 0 F(x)=0
(3) lim ⁡ x → ∞ f ′ ( x ) F ′ ( x ) \lim \limits_{x \to \infty} \cfrac{f^{'}(x)}{F^{'}(x)} xlimF(x)f(x) 存在(或为无穷大),

lim ⁡ x → ∞ f ( x ) F ( x ) = lim ⁡ x → ∞ f ′ ( x ) F ′ ( x ) . \lim_{x \to \infty} \cfrac{f(x)}{F(x)} = \lim_{x \to \infty} \cfrac{f^{'}(x)}{F^{'}(x)} . xlimF(x)f(x)=xlimF(x)f(x).

例4 求 lim ⁡ x → + ∞ π 2 − arctan ⁡ x 1 x \lim \limits_{x \to +\infty} \cfrac{\frac{\pi}{2} - \arctan x}{\frac{1}{x}} x+limx12πarctanx .
解: lim ⁡ x → + ∞ π 2 − arctan ⁡ x 1 x = lim ⁡ x → + ∞ − 1 1 − x 2 − 1 x 2 = lim ⁡ x → + ∞ x 2 1 + x 2 = 1 \lim \limits_{x \to +\infty} \cfrac{\frac{\pi}{2} - \arctan x}{\frac{1}{x}} = \lim \limits_{x \to +\infty} \cfrac{- \frac{1}{1 - x^2}}{- \frac{1}{x^2}} = \lim \limits_{x \to +\infty} \cfrac{x^2}{1 + x^2} = 1 x+limx12πarctanx=x+limx211x21=x+lim1+x2x2=1 .

例5 求 lim ⁡ x → + ∞ ln ⁡ x x n ( n > 0 ) \lim \limits_{x \to + \infty} \cfrac{\ln x}{x^n} (n > 0) x+limxnlnx(n>0) .
解: lim ⁡ x → + ∞ ln ⁡ x x n = lim ⁡ x → + ∞ 1 x n x n − 1 = lim ⁡ x → + ∞ 1 n x n = 0 \lim \limits_{x \to + \infty} \cfrac{\ln x}{x^n} = \lim \limits_{x \to + \infty} \cfrac{\frac{1}{x}}{n x^{n - 1}} = \lim \limits_{x \to + \infty} \cfrac{1}{nx^n} = 0 x+limxnlnx=x+limnxn1x1=x+limnxn1=0 .

例6 求 lim ⁡ x → + ∞ x n e λ x ( n 为正整数, λ > 0 ) \lim \limits_{x \to + \infty} \cfrac{x^n}{\mathrm{e}^{\lambda x}} (n为正整数, \lambda > 0) x+limeλxxn(n为正整数,λ>0) .
解:相继应用洛必达法则 n n n 次,得
lim ⁡ x → + ∞ x n e λ x = lim ⁡ x → + ∞ n x n − 1 λ e λ x = lim ⁡ x → + ∞ n ( n − 1 ) x n − 2 λ 2 e λ x = ⋯ = lim ⁡ x → + ∞ n ! λ n e λ x = 0. \lim_{x \to + \infty} \cfrac{x^n}{\mathrm{e}^{\lambda x}} = \lim_{x \to + \infty} \cfrac{nx^{n - 1}}{\lambda \mathrm{e}^{\lambda x}} = \lim_{x \to + \infty} \cfrac{n(n - 1)x^{n - 2}}{\lambda^2 \mathrm{e}^{\lambda x}} = \cdots = \lim_{x \to + \infty} \cfrac{n!}{\lambda^n \mathrm{e}^{\lambda x}} = 0. x+limeλxxn=x+limλeλxnxn1=x+limλ2eλxn(n1)xn2==x+limλneλxn!=0.

其他还有一些 0 ⋅ ∞ 0 \cdot \infty 0, ∞ − ∞ \infty - \infty , 0 0 0^0 00, 1 ∞ 1^{\infty} 1, ∞ 0 \infty^0 0 型的未定式,也可通过 0 0 \cfrac{0}{0} 00 ∞ ∞ \cfrac{\infty}{\infty} 型的未定式来计算。

例7 求 lim ⁡ x → 0 + x n ln ⁡ x ( n > 0 ) \lim \limits_{x \to 0^+} x^n \ln x (n > 0) x0+limxnlnx(n>0) .
解:这是未定式 0 ⋅ ∞ 0 \cdot \infty 0 。因为
x n ln ⁡ x = ln ⁡ x 1 x n , x^n \ln x = \cfrac{\ln x}{\frac{1}{x^n}} , xnlnx=xn1lnx,
x → 0 + x \to 0^+ x0+ 时,上式右端是未定式 ∞ ∞ \cfrac{\infty}{\infty} ,应用洛必达法则,得
lim ⁡ x → 0 + x n ln ⁡ x = lim ⁡ x → 0 + ln ⁡ x x − n = lim ⁡ x → 0 + 1 x − n x − n − 1 = lim ⁡ x → 0 + ( − x n n ) = 0. \lim_{x \to 0^+} x^n \ln x = \lim_{x \to 0^+} \cfrac{\ln x}{x^{-n}} = \lim_{x \to 0^+} \cfrac{\frac{1}{x}}{-n x^{-n - 1}} = \lim_{x \to 0^+} \left( \cfrac{-x^n}{n} \right) = 0. x0+limxnlnx=x0+limxnlnx=x0+limnxn1x1=x0+lim(nxn)=0.

例8 求 lim ⁡ x → π 2 ( sec ⁡ x − tan ⁡ x ) \lim \limits_{x \to \frac{\pi}{2}} (\sec x - \tan x) x2πlim(secxtanx) .
解:这是未定式 ∞ − ∞ \infty - \infty 。因为
sec ⁡ x − tan ⁡ x = 1 − sin ⁡ x cos ⁡ x , \sec x - \tan x = \cfrac{1 - \sin x}{\cos x} , secxtanx=cosx1sinx,
x → π 2 x \to \cfrac{\pi}{2} x2π 时,上式右端是未定式 0 0 \cfrac{0}{0} 00 ,应用洛必达法则,得
lim ⁡ x → π 2 ( sec ⁡ x − tan ⁡ x ) = lim ⁡ x → π 2 1 − sin ⁡ x cos ⁡ x = lim ⁡ x → π 2 − cos ⁡ x − sin ⁡ x = 0. \lim_{x \to \frac{\pi}{2}} (\sec x - \tan x) = \lim_{x \to \frac{\pi}{2}} \cfrac{1 - \sin x}{\cos x} = \lim_{x \to \frac{\pi}{2}} \cfrac{- \cos x}{- \sin x} = 0. x2πlim(secxtanx)=x2πlimcosx1sinx=x2πlimsinxcosx=0.

例9 求 lim ⁡ x → 0 + x x \lim \limits_{x \to 0^+} x^x x0+limxx .
解:这是未定式 0 0 0^0 00 。设 y = x x y = x^x y=xx ,两端取对数得
ln ⁡ y = x ln ⁡ x , \ln y = x \ln x , lny=xlnx,
x → 0 + x \to 0^+ x0+ 时,上式右端是未定式 0 ⋅ ∞ 0 \cdot \infty 0 ,应用例7的结果,得
lim ⁡ x → 0 + ln ⁡ y = lim ⁡ x → 0 + ( x ln ⁡ x ) = 0 , \lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} (x \ln x) = 0 , x0+limlny=x0+lim(xlnx)=0,
因为 y = e ln ⁡ y y = \mathrm{e}^{\ln y} y=elny ,而 lim ⁡ y = lim ⁡ e ln ⁡ y = e lim ⁡ ln ⁡ y ( 当 x → 0 + ) \lim y = \lim \mathrm{e}^{\ln y} = \mathrm{e}^{\lim \ln y} (当 x \to 0^+) limy=limelny=elimlny(x0+) ,所以
lim ⁡ x → 0 + x x = lim ⁡ x → 0 + y = e 0 = 1. \lim_{x \to 0^+} x^x = \lim_{x \to 0^+} y = \mathrm{e}^0 = 1 . x0+limxx=x0+limy=e0=1.

例10 求 lim ⁡ x → 0 tan ⁡ x − x x 2 sin ⁡ x \lim \limits_{x \to 0} \cfrac{\tan x - x}{x^2 \sin x} x0limx2sinxtanxx .
解:如果直接用洛必达法则,那么分母的导数(尤其是高阶导数)较繁,如果做一个等价无穷小替换,那么运算就方便得多。
lim ⁡ x → 0 tan ⁡ x − x x 2 sin ⁡ x = lim ⁡ x → 0 tan ⁡ x − x x 3 = lim ⁡ x → 0 sec ⁡ 2 x − 1 3 x 2 = lim ⁡ x → 0 2 sec ⁡ 2 x tan ⁡ x 6 x = 1 3 lim ⁡ x → 0 tan ⁡ x x = 1 3 . \lim_{x \to 0} \cfrac{\tan x - x}{x^2 \sin x} = \lim_{x \to 0} \cfrac{\tan x - x}{x^3} = \lim_{x \to 0} \cfrac{\sec^2 x - 1}{3x^2} = \lim_{x \to 0} \cfrac{2 \sec^2 x \tan x}{6x} = \cfrac{1}{3} \lim_{x \to 0} \cfrac{\tan x}{x} = \cfrac{1}{3} . x0limx2sinxtanxx=x0limx3tanxx=x0lim3x2sec2x1=x0lim6x2sec2xtanx=31x0limxtanx=31.

当满足定理条件时,所求的极限当然存在(或为 ∞ \infty lim ⁡ f ′ ( x ) F ′ ( x ) \lim \cfrac{f^{'}(x)}{F^{'}(x)} limF(x)f(x) 不存在时(等于无穷大的情况除外), lim ⁡ f ( x ) F ( x ) \lim \cfrac{f(x)}{F(x)} limF(x)f(x) 仍可能存在。

原文链接:高等数学 3.2 洛必达法则

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值