深入理解洛必达(L‘Hopital)法则

目录

零比零型

常数比无穷(无穷比无穷)型

关于为什么洛必达会失效?


洛必达(L'Hopital)法则对于学过高数的同学们来说并不陌生,甚至在高中就有同学已经用过了洛必达法则,应该是大家公认的求解未定式极限问题的好方法。仅仅会使用是不够的哦,这次我们就来深入理解洛必达法则,做到真正的"洛就完了"!

首先我们知道洛必达法则主要用于解决求解未定式的极限问题,大致上有两种形态:\frac{0}{0} 型和 \frac{\infty }{\infty } 型,更一般的是,第二种是不需要分子趋于无穷的,只需分母趋于无穷,即 \frac{*}{\infty } 。

【注】 \frac{*}{\infty }  型问题不是说“分子不趋于无穷”,而是“无需判断分子的趋势”。有时,分母很容易地可以判断出趋于无穷,但分子往往比较复杂,直接洛必达就节省了判断分子也趋于无穷的时间。

零比零型

首先我们来看 \frac{0}{0} 型的洛必达法则,它的定义为:

①:f\left ( x \right )g\left ( x \right ) 在 x=a 的去心邻域 \mathring{U}\left ( a,\delta \right ) 上可导,\forall x \in\mathring{U}\left ( a,\delta \right ),有 {g}'\left ( x \right )\neq 0 ;

②: \lim_{x\rightarrow a}f\left ( x \right )=\lim_{x\rightarrow a}g\left ( x \right )=0,即分子分母都趋于0;

③: \lim_{x\rightarrow a}\frac{​{f}'\left ( x \right )}{​{g}'\left ( x \right )} 存在或者为 \infty (无穷也是一种特殊的存在);

则: \lim_{x\rightarrow a}\frac{f\left ( x \right )}{g\left ( x \right )}=\lim_{x\rightarrow a}\frac{​{f}'\left ( x \right )}{​{g}'\left ( x \right )}

下面我们来证明一下

由条件我们可知f\left ( x \right )g\left ( x \right ) 均可导,可导必连续,即极限值等于函数值,有

f\left ( a \right )=g\left ( a \right )=0\lim_{x\rightarrow a}\frac{f\left ( x \right )}{g\left ( x \right )}=\lim_{x\rightarrow a}\frac{f\left ( x \right )-f\left ( a \right )}{g\left ( x \right )-g\left ( a \right )} 

接着我们在区间 \left ( a,x \right ) 上使用柯西(Cauchy)中值定理,有

\frac{f\left ( x \right )}{g\left ( x \right )}=\frac{f\left ( x \right )-f\left ( a \right )}{g\left ( x \right )-g\left ( a \right )}=\frac{f'\left ( \xi \right )}{g'\left ( \xi \right )} ,\xi \in\left [ a,x \right ]

此时我们把原函数之比的极限问题转化为了导函数之比趋于a的问题,即

\lim_{x\rightarrow a}\frac{f\left ( x \right )}{g\left ( x \right )}=\lim_{x\rightarrow a}\frac{f\left ( x \right )-f\left ( a \right )}{g\left ( x \right )-g\left ( a \right )}=\lim_{\xi \rightarrow a}\frac{f'\left ( \xi \right )}{g'\left ( \xi \right )}

最后只需把我们的 \xi 换为我们的 x 即可

\lim_{x\rightarrow a}\frac{f\left ( x \right )}{g\left ( x \right )}=\lim_{x \rightarrow a}\frac{f'\left ( \xi \right )}{g'\left ( \xi \right )}

至此,我们已经证明了 \frac{0}{0} 型洛必达法则。


常数比无穷(无穷比无穷)型

下面我们来证明 \frac{*}{\infty } 型,这个定义和 \frac{0}{0} 型的很类似:

①:f\left ( x \right )g\left ( x \right ) 在 x=a 的去心邻域 \mathring{U}\left ( a,\delta \right ) 上可导,\forall x \in\mathring{U}\left ( a,\delta \right ),有 {g}'\left ( x \right )\neq 0 ;

②: \lim_{x\rightarrow a}g\left ( x \right )=\infty

③: \lim_{x\rightarrow a}\frac{​{f}'\left ( x \right )}{​{g}'\left ( x \right )} 存在或者为 \infty ;

则: \lim_{x\rightarrow a}\frac{f\left ( x \right )}{g\left ( x \right )}=\lim_{x\rightarrow a}\frac{​{f}'\left ( x \right )}{​{g}'\left ( x \right )}

其证明过程并没有 \frac{0}{0} 型那么直观,我们先来证明:

为了方便起见,我们把 \lim_{x\rightarrow a}\frac{​{f}'\left ( x \right )}{​{g}'\left ( x \right )} 记为 l (l是有限数),根据极限的定义可知,在 a 的去心邻域 \mathring{U}\left ( a,\delta \right ) 内,恒有

 l-\varepsilon \leq \frac{​{f}'\left ( x \right )}{​{g}'\left ( x \right )}\leq l+\varepsilon.

由于 f\left ( x \right ) 在 a 处的趋势是未知的,我们不能在区间\left ( a,x \right )上直接使用柯西中值定理,因此我们选在子区间 \left ( x,c \right ) 上使用柯西中值定理,有

\frac{f\left ( x \right )-f\left ( c \right )}{g\left ( x \right )-g\left ( c \right )}=\frac{f'\left ( \xi \right )}{g'\left ( \xi \right )}\xi \in\left [ x,c \right ]

 根据上面两个式子,得到:

l-\varepsilon \leq \frac{f\left ( x \right )-f\left ( c \right )}{g\left ( x \right )-g\left ( c \right )}\leq l+\varepsilon

因为最终的落脚点要在 \frac{f\left ( x \right )}{g\left ( x \right )} 上,分子分母同时除以g\left ( x \right ),有

l-\varepsilon \leq \frac{\frac{f\left ( x \right )}{g\left ( x \right )}-\frac{f\left ( c \right )}{g\left ( x \right )}}{\frac{g\left ( x \right )}{g\left ( x \right )}-\frac{g\left ( c \right )}{g\left ( x \right )}}=\frac{\frac{f\left ( x \right )}{g\left ( x \right )}-\frac{f\left ( c \right )}{g\left ( x \right )}}{1-\frac{g\left ( c \right )}{g\left ( x \right )}}\leq l+\varepsilon

在当我们利用极限的保号性的时候,前提要求极限是存在的,所以这里我们也要证明极限的存在性

利用上下极限

l-\varepsilon\leq \varliminf_{x \to a}\frac{f\left ( x \right )}{g\left ( x \right )}\varlimsup_{x \to a}\frac{f\left ( x \right )}{g\left ( x \right )}\leq l+\varepsilon

根据性质,下极限小于等于上极限,有

l-\varepsilon\leq \varliminf_{x \to a}\frac{f\left ( x \right )}{g\left ( x \right )}\leq \varlimsup_{x \to a}\frac{f\left ( x \right )}{g\left ( x \right )}\leq l+\varepsilon

\lim_{x\rightarrow a}\frac{f\left ( x \right )}{g\left ( x \right )}=l=\lim_{x \rightarrow a}\frac{f'\left ( \xi \right )}{g'\left ( \xi \right )}

综上,得证。


最后我们梳理一下洛必达法则证明的先后关系:

\frac{f{}'\left ( x \right )}{g{}'\left ( x \right )}\Rightarrow \frac{f{}'\left ( \varepsilon \right )}{g{}'\left ( \varepsilon \right )}\Rightarrow \frac{f\left ( x \right )}{g\left ( x \right )}

已知导函数 \frac{​{f}'\left ( x \right )}{​{g}'\left ( x \right )} 极限的存在性,推出其子列 \frac{f'\left ( \xi \right )}{g'\left ( \xi \right )} 极限的存在性,根据柯西中值定理得到原函数\frac{f\left ( x \right )}{g\left ( x \right )}极限的存在性。


关于为什么洛必达会失效?

我们举个很典型的反例:

\lim_{x\rightarrow \infty}\frac{x+\sin x}{x}=\lim_{x\rightarrow \infty}1+\lim_{x\rightarrow \infty}\frac{\sin x}{x}=1+0=1

我们根据极限的性质算出来了该问题的极限存在且为1,如果用洛必达,则

\lim_{x\rightarrow \infty}\frac{\left (x{}+\sin x \right ){}'}{\left (x \right ){}'}=\lim_{x\rightarrow \infty}\left ( 1+\cos x \right )

我们发现该极限不存在,本质是因为 \frac{​{f}'\left ( x \right )}{​{g}'\left ( x \right )} 是振荡的,求导往往会改变一个函数的性质,本来连续的函数求导后导函数可能就不连续了(产生振荡间断点),证明过程中我们知道 \frac{f'\left ( \xi \right )}{g'\left ( \xi \right )} 是 \frac{​{f}'\left ( x \right )}{​{g}'\left ( x \right )}的子列,\xi是根据柯西中值定理产生的点,x是自变量,联系着整个函数列。既然 \frac{​{f}'\left ( x \right )}{​{g}'\left ( x \right )} 震荡就不能得出其子列 \frac{f'\left ( \xi \right )}{g'\left ( \xi \right )} 的极限存在,也就不能得到\lim_{x\rightarrow a}\frac{f\left ( x \right )}{g\left ( x \right )}的极限存在,所以洛必达法则失效就是在导函数的震荡间断点处出现的。


本次分享就结束啦,下次见!

  • 27
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鱼好运~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值