智能反射面信道估计:基于原子范数最小化

前言

在上一篇博客 压缩感知的尽头: 原子范数最小化, 笔者记录介绍了一种新的算法:原子范数最小化。 主要停留在算法理论的推导层面。 这篇博客则介绍在 IRS信道估计方向上, 利用原子范数最小化来求解问题的文章 Channel Estimation for RIS-Aided mmWave MIMO Systems via Atomic Norm Minimization, 今年发表在 IEEE TWC上。选取这篇文章,一方面是趁热打铁地掌握 原子范数方法的具体使用, 一方面笔者接触到原子范数的相关材料,也正是来自于文章作者何继光老师的无私分享。

系统模型

在这里插入图片描述
文中考虑的是如图的场景, 假设装有 N B N_B NB 根天线的 基站 (BS) 与 装有 N M N_M NM 根天线 用户 (MS) 之间没有直射径, 通过安装在大楼墙面上的 有 N R N_R NR 个 单元的智能反射面 (RIS/IRS)来进行通信。 本文的目的是对信道进行估计。 一个重要的简化假设是:认为IRS的响应可以看做 ULA线天线响应, 以此简化后续的推导。 然而拓展到 UPA面天线场景是非常容易的。

根据常用的 SV 几何信道建模, BS-RIS 信道可以被写为:
H B , R = ∑ l = 1 L B , R [ ρ B , R ] l α ( [ ϕ B , R ] l ) α H ( [ θ B , R ] l ) = A ( ϕ B , R ) diag ⁡ ( ρ B , R ) A H ( θ B , R ) , \begin{aligned} \mathbf{H}_{\mathrm{B}, \mathrm{R}} &=\sum_{l=1}^{L_{\mathrm{B}, \mathrm{R}}}\left[\boldsymbol{\rho}_{\mathrm{B}, \mathrm{R}}\right]_{l} \boldsymbol{\alpha}\left(\left[\phi_{\mathrm{B}, \mathrm{R}}\right]_{l}\right) \boldsymbol{\alpha}^{\mathrm{H}}\left(\left[\boldsymbol{\theta}_{\mathrm{B}, \mathrm{R}}\right]_{l}\right) \\ &=\mathbf{A}\left(\phi_{\mathrm{B}, \mathrm{R}}\right) \operatorname{diag}\left(\boldsymbol{\rho}_{\mathrm{B}, \mathrm{R}}\right) \mathbf{A}^{\mathrm{H}}\left(\boldsymbol{\theta}_{\mathrm{B}, \mathrm{R}}\right), \end{aligned} HB,R=l=1LB,R[ρB,R]lα([ϕB,R]l)αH([θB,R]l)=A(ϕB,R)diag(ρB,R)AH(θB,R),
而 RIS-MS 信道可以写为:
H R , M = ∑ l = 1 L R , M [ ρ R , M ] l α ( [ ϕ R , M ] l ) α H ( [ θ R , M ] l ) = A ( ϕ R , M ) diag ⁡ ( ρ R , M ) A H ( θ R , M ) , \begin{aligned} \mathbf{H}_{\mathrm{R}, \mathrm{M}} &=\sum_{l=1}^{L_{\mathrm{R}, \mathrm{M}}}\left[\boldsymbol{\rho}_{\mathrm{R}, \mathrm{M}}\right]_{l} \boldsymbol{\alpha}\left(\left[\phi_{\mathrm{R}, \mathrm{M}}\right]_{l}\right) \boldsymbol{\alpha}^{\mathrm{H}}\left(\left[\boldsymbol{\theta}_{\mathrm{R}, \mathrm{M}}\right]_{l}\right) \\ &=\mathbf{A}\left(\phi_{\mathrm{R}, \mathrm{M}}\right) \operatorname{diag}\left(\boldsymbol{\rho}_{\mathrm{R}, \mathrm{M}}\right) \mathbf{A}^{\mathrm{H}}\left(\boldsymbol{\theta}_{\mathrm{R}, \mathrm{M}}\right), \end{aligned} HR,M=l=1LR,M[ρR,M]lα([ϕR,M]l)αH([θR,M]l)=A(ϕR,M)diag(ρR,M)AH(θR,M),
这是很常见的毫米波信道建模,因此不展开叙述了。缺乏相关知识的可以参考之前的博客或文章原文。
那么考虑 BS-MS 的等效点对点信道, 可以写为:
H = H R , M Ω H B , R = A ( ϕ R , M ) diag ⁡ ( ρ R , M ) A H ( θ R , M ) Ω A ( ϕ B , R ) diag ⁡ ( ρ B , R ) A H ( θ B , R ) \begin{aligned} \mathbf{H}=& \mathbf{H}_{\mathrm{R}, \mathrm{M}} \boldsymbol{\Omega} \mathbf{H}_{\mathrm{B}, \mathrm{R}} \\ =& \mathbf{A}\left(\phi_{\mathrm{R}, \mathrm{M}}\right) \operatorname{diag}\left(\boldsymbol{\rho}_{\mathrm{R}, \mathrm{M}}\right) \mathbf{A}^{\mathrm{H}}\left(\boldsymbol{\theta}_{\mathrm{R}, \mathrm{M}}\right) \Omega \mathbf{A}\left(\phi_{\mathrm{B}, \mathrm{R}}\right) \operatorname{diag}\left(\boldsymbol{\rho}_{\mathrm{B}, \mathrm{R}}\right) \mathbf{A}^{\mathrm{H}}\left(\boldsymbol{\theta}_{\mathrm{B}, \mathrm{R}}\right) \end{aligned} H==HR,MΩHB,RA(ϕR,M)diag(ρR,M)AH(θR,M)ΩA(ϕB,R)diag(ρB,R)AH(θB,R)
我们定义:
G = diag ⁡ ( ρ R , M ) A H ( θ R , M ) Ω A ( ϕ B , R ) diag ⁡ ( ρ B , R ) \mathbf{G}=\operatorname{diag}\left(\boldsymbol{\rho}_{\mathrm{R}, \mathrm{M}}\right) \mathbf{A}^{\mathrm{H}}\left(\boldsymbol{\theta}_{\mathrm{R}, \mathrm{M}}\right) \boldsymbol{\Omega} \mathbf{A}\left(\boldsymbol{\phi}_{\mathrm{B}, \mathrm{R}}\right) \operatorname{diag}\left(\boldsymbol{\rho}_{\mathrm{B}, \mathrm{R}}\right) G=diag(ρR,M)AH(θR,M)ΩA(ϕB,R)diag(ρB,R)
可以将等效信道进一步化简为:
H = A ( ϕ R , M ) G A H ( θ B , R ) (1) \mathbf{H}=\mathbf{A}\left(\phi_{\mathrm{R}, \mathrm{M}}\right) \mathbf{G} \mathbf{A}^{\mathrm{H}}\left(\theta_{\mathrm{B}, \mathrm{R}}\right) \tag{1} H=A(ϕR,M)GAH(θB,R)(1)
至此, (1)其实是传统MIMO信道的经典角域形式。 而最大的区别在于,对于传统MIMO信道, G \mathbf{G} G 是一个对角阵。 而对于 RIS 等效信道, G \mathbf{G} G则是一个普通矩阵。 事实上,可以通过控制 RIS 相控阵, 对 G \mathbf{G} G 进行人为的调控。

回到信道估计问题本身: 即使使用了参数化建模, 即估计物理角度信息和路损, 而非估计信道矩阵元素, 仍有较多的未知代估变量——两组 AOA 和 AOD, 以及两组路损 ρ \rho ρ

作者采用的思路是: 先估计基站和用户端的角度, 再据此设计接收波束和发送波束,最后估计RIS上的AoA与AoD。

第一阶段

首先, 对 接收 AoA ϕ R , M \phi_{R, M} ϕR,M 进行估计。接收信号模型为:
Y t = W t H H ( Ω t ) X t + W t H Z t = W t H A ( ϕ R , M ) G t A H ( θ B , R ) X t + W t H Z t  for  t = 0 \begin{aligned} \mathbf{Y}_{t}=& \mathbf{W}_{t}^{\mathrm{H}} \mathbf{H}\left(\boldsymbol{\Omega}_{t}\right) \mathbf{X}_{t}+\mathbf{W}_{t}^{\mathrm{H}} \mathbf{Z}_{t} \\ =& \mathbf{W}_{t}^{\mathrm{H}} \mathbf{A}\left(\phi_{\mathrm{R}, \mathrm{M}}\right) \mathbf{G}_{t} \mathbf{A}^{\mathrm{H}}\left(\boldsymbol{\theta}_{\mathrm{B}, \mathrm{R}}\right) \mathbf{X}_{t}+\mathbf{W}_{t}^{\mathrm{H}} \mathbf{Z}_{t} \text { for } t=0 \end{aligned} Yt==WtHH(Ωt)Xt+WtHZtWtHA(ϕR,M)GtAH(θB,R)Xt+WtHZt for t=0
其中, X 0 ∈ C N B × N 0 \mathbf{X}_{0} \in \mathbb{C}^{N_{\mathrm{B}} \times N_{0}} X0CNB×N0。 这里 N 0 N_0 N0代表第一阶段所需的训练时隙数, 也即开销。 Ω t \boldsymbol{\Omega}_{t} Ωt代表了 智能反射面矩阵。 W t \mathbf{W}_t Wt是接收矩阵。 Z t \mathbf{Z}_t Zt为噪声。**因此, 作者假定了在基站发送不同的训练序列(组成了 X 0 \mathbf{X}_0 X0)时, 接收矩阵和 IRS矩阵是固定的。 准确而言, 作者假定是随机的。

我们令 U ‾ = A ( ϕ R . M ) G 0 A H ( θ B , R ) X 0 \overline{\mathbf{U}}=\mathbf{A}\left(\phi_{\mathrm{R} . \mathrm{M}}\right) \mathbf{G}_{0} \mathbf{A}^{\mathrm{H}}\left(\boldsymbol{\theta}_{\mathrm{B}, \mathrm{R}}\right) \mathbf{X}_{0} U=A(ϕR.M)G0AH(θB,R)X0, 那么有:
U ‾ = A ( ϕ R , M ) C ‾ \overline{\mathbf{U}}=\mathbf{A}\left(\phi_{\mathrm{R}, \mathrm{M}}\right) \overline{\mathbf{C}} U=A(ϕR,M)C
其中, C ‾ = G 0 A t H ( θ B , R ) X 0 \overline{\mathbf{C}}=\mathbf{G}_{0} \mathbf{A}_{t}^{\mathrm{H}}\left(\boldsymbol{\theta}_{\mathrm{B}, \mathrm{R}}\right) \mathbf{X}_{0} C=G0AtH(θB,R)X0。 根据原子范数最小化理论 (见上一篇博客 压缩感知的尽头: 原子范数最小化),对 A ( ϕ R . M ) \mathbf{A}\left(\phi_{\mathrm{R} . \mathrm{M}}\right) A(ϕR.M) 的估计可转化为求解如下问题(事实上是凸松弛):

{ u ^ 1 , Z ^ , U ^ } = arg ⁡ min ⁡ u ‾ 1 , Z , U μ 2 N 0 Tr ⁡ ( Z ‾ ) + μ 2 N M Tr ⁡ ( Toep ⁡ ( u ‾ 1 ) ) + 1 2 ∥ Y 0 − W 0 H U ‾ ∥ F 2  s.t.  [ Toep ⁡ ( u ‾ 1 ) U ‾ U ‾ H Z ‾ ] ⪰ 0 , \begin{aligned} \left\{\hat{\mathbf{u}}_{1}, \hat{\mathbf{Z}}, \hat{\mathbf{U}}\right\}&=\arg \min _{\overline{\mathbf{u}}_{1}, \mathbf{Z}, \mathbf{U}} \frac{\mu}{2 N_{0}} \operatorname{Tr}(\overline{\mathbf{Z}})+\frac{\mu}{2 N_{\mathrm{M}}} \operatorname{Tr}\left(\operatorname{Toep}\left(\overline{\mathbf{u}}_{1}\right)\right) +\frac{1}{2}\left\|\mathbf{Y}_{0}-\mathbf{W}_{0}^{\mathrm{H}} \overline{\mathbf{U}}\right\|_{\mathrm{F}}^{2} \\ &\text { s.t. }\left[\begin{array}{cc} \operatorname{Toep}\left(\overline{\mathbf{u}}_{1}\right)\quad& \overline{\mathbf{U}} \\ \overline{\mathbf{U}}^{\mathrm{H}} & \overline{\mathbf{Z}} \end{array}\right] \succeq 0, \end{aligned} {u^1,Z^,U^}=argu1,Z,Umin2N0μTr(Z)+2NMμTr(Toep(u1))+21Y0W0HUF2 s.t. [Toep(u1)UHUZ]0,
这里 μ \mu μ 是惩罚系数。 这个问题是一个凸问题, 因此可以直接通过 CVX 进行求解。

得到了矩阵 Toep ⁡ ( u ‾ 1 ) \operatorname{Toep}\left(\overline{\mathbf{u}}_{1}\right) Toep(u1) 后, 就可以通过 root-MUSIC 算法, 求解出对应的 ϕ R . M \phi_{\mathrm{R} . \mathrm{M}} ϕR.M 了。

那么基于原子范数最小化方法, θ B , R \theta_{\mathrm{B}, \mathrm{R}} θB,R也可以用一模一样的算法进行估计。

第二阶段

基于第一阶段的估计结果, 我们可以先对 发送波束成形和接收波束成形进行设计:
X t = 1 N B A ( θ ^ B , R ) W t = 1 N M A ( ϕ ^ R , M ) \begin{aligned} \mathbf{X}_{t} &=\frac{1}{\sqrt{N_{\mathrm{B}}}} \mathbf{A}\left(\hat{\boldsymbol{\theta}}_{\mathrm{B}, \mathrm{R}}\right) \\ \mathbf{W}_{t} &=\frac{1}{\sqrt{N_{\mathrm{M}}}} \mathbf{A}\left(\hat{\phi}_{\mathrm{R}, \mathrm{M}}\right) \end{aligned} XtWt=NB 1A(θ^B,R)=NM 1A(ϕ^R,M)

作者指出, 当 θ ^ B , R ≈ θ B , R \hat{\theta}_{\mathrm{B}, \mathrm{R}} \approx \theta_{\mathrm{B}, \mathrm{R}} θ^B,RθB,R ϕ ^ R , M ≈ ϕ R , M \hat{\phi}_{\mathrm{R}, \mathrm{M}} \approx \phi_{\mathrm{R}, \mathrm{M}} ϕ^R,MϕR,M 时, 这样做的目的在于会有以下结论:
A H ( θ B , R ) X t ≈ N B I W t H A ( ϕ R , M ) ≈ N M I \begin{aligned} \mathbf{A}^{\mathrm{H}}\left(\boldsymbol{\theta}_{\mathrm{B}, \mathrm{R}}\right) \mathbf{X}_{t} & \approx \sqrt{N_{\mathrm{B}}} \mathbf{I} \\ \mathbf{W}_{t}^{\mathrm{H}} \mathbf{A}\left(\phi_{\mathrm{R}, \mathrm{M}}\right) & \approx \sqrt{N_{\mathrm{M}}} \mathbf{I} \end{aligned} AH(θB,R)XtWtHA(ϕR,M)NB INM I

但这里笔者想指出其实是要有一个前提条件的, 即不同径之间的正弦差 sin ⁡ ( θ i ) − sin ⁡ ( θ j ) \sin(\theta_i)- \sin(\theta_j) sin(θi)sin(θj)要不小于 4 N \frac{4}{N} N4。 只有在正弦差大于 4 N \frac{4}{N} N4 时, 不同的 a ( θ ) \mathbf{a}(\theta) a(θ) 才是近似正交的。 仿真部分作者也提到了这一前提条件是需要的, 当然, 这也是原子范数最小化法所需要的。

在重新设计了发送和接收波束后, 第二阶段的接收信号可以表示为:
Y t = W t H A ( ϕ R , M ) G t A H ( θ B , R ) X t + W t H Z t ≈ N B N M G t + W t H Z t ,  for  t = 1 , … , T (2) \begin{aligned} \mathbf{Y}_{t} &=\mathbf{W}_{t}^{\mathrm{H}} \mathbf{A}\left(\boldsymbol{\phi}_{\mathrm{R}, \mathrm{M}}\right) \mathbf{G}_{t} \mathbf{A}^{\mathrm{H}}\left(\boldsymbol{\theta}_{\mathrm{B}, \mathrm{R}}\right) \mathbf{X}_{t}+\mathbf{W}_{t}^{\mathrm{H}} \mathbf{Z}_{t} \approx \sqrt{N_{\mathrm{B}} N_{\mathrm{M}}} \mathbf{G}_{t}+\mathbf{W}_{t}^{\mathrm{H}} \mathbf{Z}_{t}, \text { for } t=1, \ldots, T \end{aligned} \tag{2} Yt=WtHA(ϕR,M)GtAH(θB,R)Xt+WtHZtNBNM Gt+WtHZt, for t=1,,T(2)

回顾我们的定义: G t = diag ⁡ ( ρ R , M ) A H ( θ R , M ) Ω t A ( ϕ B , R ) diag ⁡ ( ρ B , R ) \mathbf{G}_{t}=\operatorname{diag}\left(\boldsymbol{\rho}_{\mathrm{R}, \mathrm{M}}\right) \mathbf{A}^{\mathrm{H}}\left(\boldsymbol{\theta}_{\mathrm{R}, \mathrm{M}}\right) \boldsymbol{\Omega}_{t} \mathbf{A}\left(\boldsymbol{\phi}_{\mathrm{B}, \mathrm{R}}\right)\operatorname{diag}\left(\rho_{\mathrm{B}, \mathrm{R}}\right) Gt=diag(ρR,M)AH(θR,M)ΩtA(ϕB,R)diag(ρB,R)

这里注意到, 式子可以被化简为:
[ G t ] m n = [ ρ R , M ] m ω t ⊤ α ( [ Δ ] m n ) [ ρ B , R ] n ,  for  m = 1 , … , L R , M , n = 1 , … , L B , R \begin{aligned} &{\left[\mathbf{G}_{t}\right]_{m n}=\left[\boldsymbol{\rho}_{\mathrm{R}, \mathrm{M}}\right]_{m} \boldsymbol{\omega}_{t}^{\top} \boldsymbol{\alpha}\left([\boldsymbol{\Delta}]_{m n}\right)\left[\boldsymbol{\rho}_{\mathrm{B}, \mathrm{R}}\right]_{n}} ,\text { for } m=1, \ldots, L_{\mathrm{R}, \mathrm{M}}, n=1, \ldots, L_{\mathrm{B}, \mathrm{R}} \end{aligned} [Gt]mn=[ρR,M]mωtα([Δ]mn)[ρB,R]n, for m=1,,LR,M,n=1,,LB,R
其中, [ Δ ] m n = asin ⁡ ( sin ⁡ ( [ ϕ B , R ] n ) − sin ⁡ ( [ θ R , M ] m ) ) [\boldsymbol{\Delta}]_{m n}=\operatorname{asin}\left(\sin \left(\left[\boldsymbol{\phi}_{\mathrm{B}, \mathrm{R}}\right]_{n}\right)-\sin \left(\left[\boldsymbol{\theta}_{\mathrm{R}, \mathrm{M}}\right]_{m}\right)\right) [Δ]mn=asin(sin([ϕB,R]n)sin([θR,M]m))
笔者认为, 这是在 IRS 信道估计中, 极为重要的一个式子。
他的 推导比较简单,最笨的办法可以一项项手算, 能得到上面这个式子。 简单的提示就是因为 Ω t \Omega_t Ωt 是对角阵, 那么 Ω t A \Omega_t\mathbf{A} ΩtA 等于用 Ω t \Omega_t Ωt 的对角元素向量 ω t \omega_t ωt 哈达玛积 A \mathbf{A} A 中的每一列。 再根据线性代数, 就可以得到上面的结果。

这里,我们关注到两个非常重要的事实:

  • IRS 估计中, BS-IRS 和 UE-IRS 两个信道各自的增益,即 [ ρ R , M ] m \left[\boldsymbol{\rho}_{\mathrm{R}, \mathrm{M}}\right]_{m} [ρR,M]m [ ρ B , R ] n \left[\boldsymbol{\rho}_{\mathrm{B}, \mathrm{R}}\right]_{n} [ρB,R]n, 是无法精确估计的。 因为有无数组增益, 对应相同的 G t \mathbf{G}_t Gt。 例如, 当 G t = 2 \mathbf{G}_t=2 Gt=2 时, [ ρ R , M ] m \left[\boldsymbol{\rho}_{\mathrm{R}, \mathrm{M}}\right]_{m} [ρR,M]m [ ρ B , R ] n \left[\boldsymbol{\rho}_{\mathrm{B}, \mathrm{R}}\right]_{n} [ρB,R]n可以是 1 1 1 2 2 2, 也可以是 4 4 4 0.5 0.5 0.5, 然而这两组情况对应接收到的导频(通过 G t \mathbf{G}_t Gt)得到的信号却是完全一样的。 也就是说, 这是绝不可能精确分辨的。
  • 角度值也是不可分辨的。 因为可以有不同的两组角, 却对应相同的 Δ \Delta Δ

但同时, 这也给了我们启示:

  • 估计 IRS 的增益时, 只需要估计等效信道的增益,即 [ ρ R , M ] m [ ρ B , R ] n \left[\boldsymbol{\rho}_{\mathrm{R}, \mathrm{M}}\right]_{m}\left[\boldsymbol{\rho}_{\mathrm{B}, \mathrm{R}}\right]_{n} [ρR,M]m[ρB,R]n 的结果。
  • 而估计角度时, 也只需要估计 IRS 到达角与发送角之间的 角度正弦差。

回到我们的估计问题中, 根据 (2), 通过收集多个时隙的导频信号如下:
Y = [ vec ⁡ ( Y 1 ) , … , vec ⁡ ( Y T ) ] \mathbf{Y}=\left[\operatorname{vec}\left(\mathbf{Y}_{1}\right), \ldots, \operatorname{vec}\left(\mathbf{Y}_{T}\right)\right] Y=[vec(Y1),,vec(YT)]
[ Y ] i , : ⊤ ≈ N B N M v e c ( G i ) T + z i , = N B N M [ ω 1 , … , ω T ] ⊤ ρ i α ( θ ~ i ) + z i , = N B N M Ω ‾ ρ i α ( θ ~ i ) + z i , (3) \begin{aligned} [\mathbf{Y}]_{i,:}^{\top} & \approx \sqrt{N_{\mathrm{B}} N_{\mathrm{M}}}\mathrm{vec}(\mathbf{G}_\mathrm{i})^T+\mathbf{z}_{i}, \\ &=\sqrt{N_{\mathrm{B}} N_{\mathrm{M}}}\left[\boldsymbol{\omega}_{1}, \ldots, \boldsymbol{\omega}_{T}\right]^{\top} \rho_{i} \boldsymbol{\alpha}\left(\tilde{\theta}_{i}\right)+\mathbf{z}_{i}, \\ &=\sqrt{N_{\mathrm{B}} N_{\mathrm{M}}} \overline{\boldsymbol{\Omega}} \rho_{i} \boldsymbol{\alpha}\left(\tilde{\theta}_{i}\right)+\mathbf{z}_{i}, \end{aligned} \tag{3} [Y]i,:NBNM vec(Gi)T+zi,=NBNM [ω1,,ωT]ρiα(θ~i)+zi,=NBNM Ωρiα(θ~i)+zi,(3)
其中, ρ i = [ ρ R , M ] m [ ρ B , R ] n θ ~ i = asin ⁡ ( sin ⁡ ( [ ϕ B , R ] n ) − sin ⁡ ( [ θ R , M ] m ) ) Ω ‾ = [ ω 1 , … , ω T ] ⊤ z i = [ vec ⁡ ( W 1 H Z 1 ) , … , vec ⁡ ( W T H Z T ) ] i , : T \begin{aligned} \rho_{i} &=\left[\boldsymbol{\rho}_{\mathrm{R}, \mathrm{M}}\right]_{m}\left[\boldsymbol{\rho}_{\mathrm{B}, \mathrm{R}}\right]_{n} \\ \tilde{\theta}_{i} &=\operatorname{asin}\left(\sin \left(\left[\boldsymbol{\phi}_{\mathrm{B}, \mathrm{R}}\right]_{n}\right)-\sin \left(\left[\boldsymbol{\theta}_{\mathrm{R}, \mathrm{M}}\right]_{m}\right)\right)\\ \overline{\boldsymbol{\Omega}}&=\left[\boldsymbol{\omega}_{1}, \ldots, \boldsymbol{\omega}_{T}\right]^{\top}\\ \mathbf{z}_{i}&=\left[\operatorname{vec}\left(\mathbf{W}_{1}^{\mathrm{H}} \mathbf{Z}_{1}\right), \ldots, \operatorname{vec}\left(\mathbf{W}_{T}^{\mathrm{H}} \mathbf{Z}_{T}\right)\right]_{i,:}^{\mathbf{T}} \end{aligned} ρiθ~iΩzi=[ρR,M]m[ρB,R]n=asin(sin([ϕB,R]n)sin([θR,M]m))=[ω1,,ωT]=[vec(W1HZ1),,vec(WTHZT)]i,:T

可以看到, 经过这样的转化, Y \mathbf{Y} Y 的 第 i i i 行中, 包含了 第 i i i 条路径的信息。 i = 1 , … , L B , R L R , M i=1, \ldots, L_{\mathrm{B}, \mathrm{R}} L_{\mathrm{R}, \mathrm{M}} i=1,,LB,RLR,M。 而根据 (3), 又可以看出这可以转化为经典的原子范数最小化问题。 这里就不再赘述具体的过程了, 可以查阅博客和原文。

得到信息后, 就可以恢复出 G t \mathbf{G}_t Gt, 再结合第一阶段已估计的两个 A \mathbf{A} A 矩阵, 就完成了整个信道估计的过程。

波束成形

在得到了信道估计结果后, 作者给出了一种可行的波束成形(包括基站和用户的发送和接收波束成形, 以及IRS的被动波束成形)。尽管这并不是一种最优的方案, 但无疑其复杂度非常之低。

作者首先设计 Ω \Omega Ω, 其目标如下:
Ω ⋆ = arg ⁡ max ⁡ Ω ∥ G ∥ F 2 \boldsymbol{\Omega}^{\star}=\arg \max _{\boldsymbol{\Omega}}\|\mathbf{G}\|_{\mathrm{F}}^{2} Ω=argΩmaxGF2

这样做的原因是, 在第二阶段的类似假设下, 这等价于最大化接收信噪比。 这个问题可以进而展开为:
ω ⋆ = arg ⁡ max ⁡ ω ∑ i = 1 L B , R L R , M ∣ ρ ^ i ω ⊤ α ( θ ~ ^ i ) ∣ 2 = arg ⁡ max ⁡ ω ω ⊤ E E H ω ∗ , \begin{aligned} \boldsymbol{\omega}^{\star} &=\arg \max _{\omega} \sum_{i=1}^{L_{B, R} L_{R, M}}\left|\hat{\rho}_{i} \boldsymbol{\omega}^{\top} \boldsymbol{\alpha}\left(\hat{\tilde{\theta}}_{i}\right)\right|^{2} \\ &=\arg \max _{\omega} \boldsymbol{\omega}^{\top} \mathbf{E E}^{\mathrm{H}} \boldsymbol{\omega}^{*}, \end{aligned} ω=argωmaxi=1LB,RLR,Mρ^iωα(θ~^i)2=argωmaxωEEHω,
便可以通过常见的 EVD 特征分解进行求解。 而 IRS 的恒模约束, 则只需对 EVD 的结果保留相位即可。

当确定了 Ω \Omega Ω 后, 等效的 BS-UE信道可以写为:
H ^ = A ( ϕ ^ R , M ) G ^ A H ( θ ^ B , R ) \hat{\mathbf{H}}=\mathbf{A}\left(\hat{\phi}_{\mathrm{R}, \mathrm{M}}\right) \hat{\mathbf{G}} \mathbf{A}^{\mathrm{H}}\left(\hat{\boldsymbol{\theta}}_{\mathrm{B}, \mathrm{R}}\right) H^=A(ϕ^R,M)G^AH(θ^B,R)
那么发送和接收波束就可以直接通过对其 SVD分解得到。 也就是可以把这个 IRS 的波束成形看做是传统的 MIMO波束成形即可。 可以看到, 尽管这并不是一个最优的方案, 但它不需要迭代, 行之有效。

仿真性能

最后是文章的性能仿真部分。 与一般的将信道矩阵的NMSE作为指标不同, 它以如下一些具体的信道参数的MSE作为指标:
MSE ⁡ ( sin ⁡ ( θ B , R ) ) = E [ ∥ sin ⁡ ( θ B , R ) − sin ⁡ ( θ ^ B , R ) ∥ 2 2 L B , R ] MSE ⁡ ( sin ⁡ ( ϕ R , M ) ) = E [ ∥ sin ⁡ ( ϕ R , M ) − sin ⁡ ( ϕ ^ R , M ) ∥ 2 2 L R , M ] MSE ⁡ ( sin ⁡ ( Δ ) ) = E [ ∥ sin ⁡ ( Δ ) − sin ⁡ ( Δ ^ ) ∥ F 2 L B , R L R , M ] MSE ⁡ ( ρ ) = E [ ∥ ρ − ρ ^ ∥ 2 2 L B , R L R , M ] \begin{aligned} \operatorname{MSE}\left(\sin \left(\boldsymbol{\theta}_{\mathrm{B}, \mathrm{R}}\right)\right) &=\mathbb{E}\left[\frac{\left\|\sin \left(\boldsymbol{\theta}_{\mathrm{B}, \mathrm{R}}\right)-\sin \left(\hat{\boldsymbol{\theta}}_{\mathrm{B}, \mathrm{R}}\right)\right\|_{2}^{2}}{L_{\mathrm{B}, \mathrm{R}}}\right] \\ \operatorname{MSE}\left(\sin \left(\phi_{\mathrm{R}, \mathrm{M}}\right)\right) &=\mathbb{E}\left[\frac{\left\|\sin \left(\phi_{\mathrm{R}, \mathrm{M}}\right)-\sin \left(\hat{\boldsymbol{\phi}}_{\mathrm{R}, \mathrm{M}}\right)\right\|_{2}^{2}}{L_{\mathrm{R}, \mathrm{M}}}\right] \\ \operatorname{MSE}(\sin (\boldsymbol{\Delta})) &=\mathbb{E}\left[\frac{\|\sin (\boldsymbol{\Delta})-\sin (\hat{\boldsymbol{\Delta}})\|_{\mathrm{F}}^{2}}{L_{\mathrm{B}, \mathrm{R}} L_{\mathrm{R}, \mathrm{M}}}\right] \\ \operatorname{MSE}(\boldsymbol{\rho}) &=\mathbb{E}\left[\frac{\|\boldsymbol{\rho}-\hat{\boldsymbol{\rho}}\|_{2}^{2}}{L_{\mathrm{B}, \mathrm{R}} L_{\mathrm{R}, \mathrm{M}}}\right] \end{aligned} MSE(sin(θB,R))MSE(sin(ϕR,M))MSE(sin(Δ))MSE(ρ)=ELB,Rsin(θB,R)sin(θ^B,R)22=ELR,Msin(ϕR,M)sin(ϕ^R,M)22=E[LB,RLR,Msin(Δ)sin(Δ^)F2]=E[LB,RLR,Mρρ^22]
另外, 如同上面我们所提到过的, 在生成信道时, 他假定了两条路径的正弦差要大于 4 / N B , 4 / N R 4 / N_{\mathrm{B}}, 4 / N_{\mathrm{R}} 4/NB,4/NR, and 4 / N M 4 / N_{\mathrm{M}} 4/NM

宽带频谱感知技术要实现直接观测宽带频谱, 然后检测出其中所有的主用户信号,需要极高的采样速率并处理海量的数据。 由于压缩感知理论为实现低速率宽带频谱感知提供了理论基础, 因此宽带压缩频谱感知技术成为一个重要的研究方向。 然而, 传统压缩感知模型会对频域离散化, 产生基不匹配问题, 从而降低对主用户信号频率估计的准确性。 此外, 主用户的通信行为是未知且随时间而变化的, 导致宽带频谱稀疏结构的动态变化, 给宽带压缩频谱感知带来困难。 另一方面, 由于无线信号受多径效应和其他因素的影响, 可能存在认知用户接收到某个主用户信号能量过低而无法准确检测到该主用户信号存在的情况, 造成感知性能下降。 这些都是宽带压缩频谱感知客观存在且急需解决的问题。 根据宽带压缩频谱感知技术的研究现状, 将目前存在的困难总结成四点, 即准确性、 实时性、动态性、衰落性。本文的研究内容围绕这四点展开,研究层次由浅入深逐渐递进。 首先, 根据原子范数和无网格压缩感知理论,建立基于原子范数的宽带压缩频谱感知模型, 并提出求解该模型的快速算法, 实现高斯信道下的静态宽带压缩频谱感知;然后, 结合卡尔曼滤波器理论, 建立动态宽带压缩频谱感知模型,实现高斯信道下的动态宽带压缩频谱感知;最后, 利用联合频谱感知方法, 建立基于原子 MMV 的宽带压缩频谱感知模型,实现频率非选择性慢衰落信道下的宽带压缩频谱感知。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B417科研笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值