笔记-An Iterative Image Registration Technique with an Application to Stereo Vision

本文介绍了图像迭代配准技术在解决立体视觉问题中的应用,特别是通过光流算法来匹配不同参数下的图像。文章讨论了现有技术的不足,如识别效率低和对旋转仿射变换的不适用,并提出了使用图像的形状信息和二阶导数作为权重的改进方法。通过牛顿迭代法计算最优变换参数,实现了从低频到高频的匹配策略,以提高计算效率和准确性。此外,还介绍了在实际应用中如何计算图像深度,并对相机参数进行估计。
摘要由CSDN通过智能技术生成

An Iterative Image Registration Technique with an Application to Stereo Vision

图像迭代配准方法在立体视觉方面的应用

初学,很多问题、错误,非常欢迎批评指正。

A is registered with B,将A进行变换,使其拍摄相机坐标与b的坐标相同+共用一个尺度

in approximate registration 我现在的理解是 相机的 位置等一系列参数相同

感谢CSDN其他博主相关理解翻译

https://blog.csdn.net/u010008615/article/details/50741917?utm_source=blogxgwz0

https://cloud.tencent.com/developer/article/1163547

配准算法

如果你要写博客,绝不是为了给自己找存在感或者打镇定剂,而是真正的学会,东西。

光流算法

I ( x + δ x , y + δ y , z + δ z , t + δ t ) = I ( x , y , z , t ) + ∂ I ∂ x δ x + ∂ I ∂ y δ y + ∂ I ∂ z δ z + ∂ I ∂ t δ t + H . O . T {\rm{I}}(x + \delta x,y + \delta y,z + \delta z,t + \delta t) = I(x,y,z,t) + \frac{ {\partial I}}{ {\partial x}}\delta x + \frac{ {\partial I}}{ {\partial y}}\delta y + \frac{ {\partial I}}{ {\partial z}}\delta z + \frac{ {\partial I}}{ {\partial t}}\delta t + H.O.T I(x+δx,y+δy,z+δz,t+δt)=I(x,y,z,t)+xIδx+yIδy+zIδz+tIδt+H.O.T

HOT指更高阶,在移动小时可以忽略

∂ I ∂ x δ x + ∂ I ∂ y δ y + ∂ I ∂ z δ z + ∂ I ∂ t δ t = 0 \begin{array}{l}\frac{ {\partial I}}{ {\partial x}}\delta x + \frac{ {\partial I}}{ {\partial y}}\delta y + \frac{ {\partial I}}{ {\partial z}}\delta z + \frac{ {\partial I}}{ {\partial t}}\delta t{\rm{ = 0}} \end{array}

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值