An Iterative Image Registration Technique with an Application to Stereo Vision
图像迭代配准方法在立体视觉方面的应用
初学,很多问题、错误,非常欢迎批评指正。
A is registered with B,将A进行变换,使其拍摄相机坐标与b的坐标相同+共用一个尺度
in approximate registration 我现在的理解是 相机的 位置等一系列参数相同
感谢CSDN其他博主相关理解翻译
https://blog.csdn.net/u010008615/article/details/50741917?utm_source=blogxgwz0
https://cloud.tencent.com/developer/article/1163547
配准算法
如果你要写博客,绝不是为了给自己找存在感或者打镇定剂,而是真正的学会,东西。
文章目录
光流算法
I ( x + δ x , y + δ y , z + δ z , t + δ t ) = I ( x , y , z , t ) + ∂ I ∂ x δ x + ∂ I ∂ y δ y + ∂ I ∂ z δ z + ∂ I ∂ t δ t + H . O . T {\rm{I}}(x + \delta x,y + \delta y,z + \delta z,t + \delta t) = I(x,y,z,t) + \frac{ {\partial I}}{ {\partial x}}\delta x + \frac{ {\partial I}}{ {\partial y}}\delta y + \frac{ {\partial I}}{ {\partial z}}\delta z + \frac{ {\partial I}}{ {\partial t}}\delta t + H.O.T I(x+δx,y+δy,z+δz,t+δt)=I(x,y,z,t)+∂x∂Iδx+∂y∂Iδy+∂z∂Iδz+∂t∂Iδt+H.O.T
HOT指更高阶,在移动小时可以忽略
故
∂ I ∂ x δ x + ∂ I ∂ y δ y + ∂ I ∂ z δ z + ∂ I ∂ t δ t = 0 \begin{array}{l}\frac{ {\partial I}}{ {\partial x}}\delta x + \frac{ {\partial I}}{ {\partial y}}\delta y + \frac{ {\partial I}}{ {\partial z}}\delta z + \frac{ {\partial I}}{ {\partial t}}\delta t{\rm{ = 0}} \end{array}