如何预估一个系统的QPS(每秒查询率)
预估系统的QPS(Queries Per Second)是容量规划和系统设计的重要环节,以下是系统化的预估方法和步骤:
一、基础概念
QPS(每秒查询率):系统每秒能够处理的请求数量,是衡量系统处理能力的关键指标。
二、预估方法
1. 业务流量推算法(自顶向下)
不同的业务类型的QPS是不太一样的,比如B类业务和C类业务,支付业务和购物车业务,这些都是不太一样的。需要关注以下几点
- 确定业务总量(如日活用户DAU)
- 计算平均每日请求量 = DAU × 每用户日均操作次数
- 计算峰值QPS = (日请求总量 × 业务集中因子) / (86400 × 峰值占比)
- 分析用户的典型行为模式,如每天的活跃时间、行为频率等
- 要预估QPS,就要大概知道我们一共有多少用户,人数都不知道,怎么预估出一秒钟有多少人访问呢?所以需要重点考虑目标用户群的规模
2. 参考历史数据(自底向上)
如果是已有系统,分析历史流量数据,特别是高峰时段的数据。
对于新系统,可以参考类似系统的公开数据或行业标准。
- 分析Nginx/Access日志获取真实请求量
- 增加安全余量(通常20-30%)
3. 压力测试法
适用场景:新系统上线前验证
- 工具:JMeter、Locust、wrk
- 方法:
# 使用wrk进行测试示例 wrk -t12 -c400 -d30s --latency http://api.example.com
- 关键指标:
- 吞吐量(Requests/sec)
- 错误率(<1%为佳)
- 响应时间(P99 < 500ms)
三、关键影响因素
因素 | 影响程度 | 优化方向 |
---|---|---|
数据库性能 | ★★★★★ | 读写分离/缓存/分库分表 |
代码效率 | ★★★★ | 算法优化/异步处理 |
网络带宽 | ★★★ | CDN/压缩传输 |
服务器配置 | ★★ | 垂直扩展(CPU/内存) |
外部依赖 | ★★ | 熔断降级机制 |
四、容量规划建议
- 冗余设计:按预估峰值的2-3倍设计
- 弹性扩展:云原生架构支持自动扩缩容
- 监控告警:设置QPS阈值告警(如80%容量)
- 压测验证:定期全链路压测(如双11前)
五、行业参考值
- 电商大促:50,000+ QPS
- 社交APP:10,000-30,000 QPS
- 企业OA系统:500-2,000 QPS
- API网关:100,000+ QPS
实际QPS需求需结合业务特点具体分析,建议采用「基准测试+业务预测」的组合方式进行综合评估。
六、举例
我们预估一下微博的互动QPS情况。
首先,根据历史数据显示,微博月活跃用户达到6.05亿。通常日活用户数是月活用户数的20%-30%左右,按照30%来算的话,那么日活用户数为2亿。
根据微博这个产品的属性,假设每个用户每天产生2次互动,比如发微博、转发评论等。那么日均请求量就是4亿次(2亿*2)。
如果不考虑峰值情况的话,那么把这个4亿次平均分摊一下,那么每秒钟就有4639次请求。(4亿/24/3600)
但是,一般来说,一个业务的峰值流量会是平时的数倍,在不考虑热点事件的情况下,假设峰值流量是日均流量的3倍,并且每天的峰值流量会维持在2小时左右。那么就有以下公式:
假设日常流量的QPS为X:
X * (24-2)* 3600 +2 *3 * X * 3600 = 400000000
那么最终可以得出X= 3968。即日常QPS大概为4000左右,峰值QPS为12000左右。
当然,以上预估我们有很多假设,比如假设日活用户数是月活用户数的30%,假设每个用户每天产生2次互动,假设峰值QPS是日常的3倍,假设峰值时长持续2小时。在我们实际业务做预估的时候,也会有些指标是没有具体值的,也会有假设值。