Web 端语音对话 AI 示例:使用 Whisper 和 llama.cpp 构建语音聊天机器人

大语言模型(LLM)为基于文本的对话提供了强大的能力。那么,能否进一步扩展,将其转化为语音对话的形式呢?本文将展示如何使用 Whisper 语音识别和 llama.cpp 构建一个 Web 端语音聊天机器人。

系统概览

如上图所示,系统的工作流程如下:

  1. 用户通过语音输入。
  2. 语音识别,转换为文本。
  3. 文本通过大语言模型(LLM)生成文本响应。
  4. 最后,文本转语音播放结果。

系统实现

端侧的具体形态(如 web 端、桌面端、手机端)直接影响了第一步用户语言的输入,以及最后一步响应结果的语音播放。
在本文中,我们选择使用 Web 端作为示例,利用浏览器本身的语言采集和语音播放功能,来实现用户与系统的互动。

下图展示了系统架构:

用户通过 Web 端与系统交互,语音数据通过 WebSocket 传输到后端服务,后端服务使用 Whisper 将语音转换为文本,接着通过 llama.cpp 调用 LLM 生成文本响应,最后,文本响应通过 WebSocket 发送回前端,并利用浏览器的语音播放功能将其朗读出来。

Web 端

Web 端的实现主要依赖 HTML5 和 JavaScript。我们使用浏览器的 Web API 进行语音采集和语音播放。以下是简化的 Web 端代码示例:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Voice Chat AI</title>
    <style>
        #loading {
      display: none; font-weight: bold; color: blue }
        #response {
      white-space: pre-wrap; }
    </style>
</head>
<body>
    <h1>Voice Chat AI</h1>
    <button id="start">Start Recording</button>
    <button id="stop" disabled>Stop Recording</button>
    <p id="loading">Loading...</p>
    <p>AI Response: <span id
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值