ST-GCN+Openpose动作识别(Ubuntu16.04+cuda9.0+cudnn7.1/window10+VS2015+CPU)

       由于做项目,精力限制,好久好久没有写博客,正好最近在关注动作识别方面,试了一下港科大的开源代码ST-GCN,分别在Ubuntu16.04和Win10下配完了环境,成功运行。其中Ubuntu是Cuda9+cudnn7.1,windows是CPU(学校给配的阉割电脑,慢的一批···)

Ubuntu16.04

       首先是配置openpose,第一件事当然是编译caffe啦,Ubuntu下caffe的编译真的神烦,总结就是缺什么装什么,少什么补什么,注意是否有依赖包版本问题,多的就不说了,我也是借着前辈们填完的坑才过来的,出了问题一查基本都会找到。

      在caffe编译成功的前提下,使用CMake-gui编译openpose,因为这里是先编译完的caffe,所以在GUI界面上就不需要再build caffe了,把勾去掉,然后在下边caffe路径选择自己编译完的caffe路径,其他不变。

     opencv就不说了···

   configure + generate 编译完成。

   然后参照github说明,基本就能用了。

       接下来是ST-GCN的安装,github下载源码以后,按其说明逐步安装pytorch,ffmpeg等,之后安装,这些都不会出没什么问题,下载模型时,如果使用的是百度云的模型而不是bash,记得把模型名改掉再放入models文件夹下。

百度云下载的模型名是kinetics-st_gcn.pt,应改为st_gcn.kinetics.pt。

同时把openpose中的caffe_440000模型放到models中的pose/coco文件夹中

然后就可以运行Demo了。

Win10

我的win10系统没有显卡,所以不得不用CPU,事实证明我的CPU版本只适合跑图片。

win10配置openpose

去github下载openpose windows版

使用Cmake-GUI

选择openpose路径和build路径

configure自动下载所需模型等

注意弹窗选择VS2015 win64(根据系统环境来,不是64的默认就可以)

因为默认是cuda版,所以一定会报错,configure失败后更改Cmake中的设置,cudnn勾掉,选CPU_ONLY

opencv,caffe等会自动下载并编译。所以不会出什么问题

生成完之后,在VS2015中打开并生成解决方案,注意运行时release+win64。

把生成的build/bin文件夹下的所有库复制到x64/release/下,

将models文件夹复制到build中

为ST-GCN使用准备

openpose这时候就可以了接下来

ST-GCN的配置

前边的操作和Ubuntu一样,除了bash用不了得下百度云(注意改名),同样把440000模型放到coco中。

安装完以后注意在windows命令行下,demo运行命令不同,

将demo.py中的

#        openpose = '{}/examples/openpose/openpose.bin'.format(self.arg.openpose)此行改为
        openpose = '{}/OpenPoseDemo.exe'.format(self.arg.openpose)

 还有parser.add_argument('--openpose'改为下(此处该不该都可以,改了命令行就可以不输入路径直接默认值)

parser.add_argument('--openpose',
            default='D:/openpose-master/build/x64/Release',
            help='Path to openpose')

命令行启动demo例(注意斜杠):

python main.py demo --openpose D:/openpose-master/build/x64/Release --video D:/action-reco/st-gcn-master/resource/media/clean_and_jerk.mp4

ok了···

不好意思写的太水了,做的时候没有边做边记录,所以没截图回忆起来也不太细···openpose不同环境我配了很多遍了,有问题可以直接联系我,对具体问题可能我会有印象···

评论 124
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值