python transpose函数_转载:numpy中transpose和swapaxes函数讲解

这篇博客详细解释了numpy数组操作中的transpose和swapaxes函数。transpose函数通过指定维度序号实现数组维度的重新排列,例如将第三个维度转为第一个维度。swapaxes函数则用于交换两个指定维度的位置,如将第二和第三个维度交换。举例说明了这两个函数如何影响数组索引和元素位置,有助于深入理解高维数组的操作。
摘要由CSDN通过智能技术生成

看《利用python进行数据分析》,有些不大清楚numpy中transpose和swapaxes函数的原理,这篇文章写的比较清楚,转载过来方便个人随时阅读和温习

版权声明:本文为CSDN博主「ML_BOY」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。

原文:numpy中transpose和swapaxes函数讲解

1.transpose()

这个函数如果括号内不带参数,就相当于转置,和.T效果一样,而今天主要来讲解其带参数。 我们看如下一个numpy的数组:

arr=np.arange(16).reshape((2,2,4))

arr=array([[[0,1,2,3],

[4,5,6,7]],

[[8,9,10,11],

[12,13,14,15]]])

那么有:

arr.transpose(2,1,0)

array([[[0,8],

[4,12]],

[[1,9],

[5,13]],

[[2,10],

[6,14]],

[[3,11],

[7,15]]])

为什么会是这样的结果呢,这是因为arr这个数组有三个维度,三个维度的编号对应为(0,1,2),比如这样,我们需要拿到7这个数字,怎么办,肯定需要些三个维度的值,7的第一个维度为0,第二个维度为1,第三个3,所以arr[0,1,3]则拿到了7。

arr[0,1,3] #结果就是7

这下应该懂了些吧,好,再回到transpose()这个函数,它里面就是维度的排序,比如我们后面写的transpose(2,1,0),就是把之前第三个维度转为第一个维度,之前的第二个维度不变,之前的第一个维度变为第三个维度,好那么我们继续拿7这个值来说,之前的索引为[0,1,3],按照我们的转换方法,把之前的第三维度变为第一维度,之前的第一维度变为第三维度,那么现在7的索引就是(3,1,0)

同理所有的数组内的数字都是这样变得,这就是transpose()内参数的变化。

2.swapaxes()

理解了上面,再来理解swapaxes()就很简单了,swapaxes接受一对轴编号,其实这里我们叫一对维度编号更好吧,比如:

arr.swapaxes(2,1) #就是将第三个维度和第二个维度交换

array([[[0,4],

[1,5],

[2,6],

[3,7]],

[[8,12],

[9,13],

[10,14],

[11,15]]])

还是拿我们的数字7来说,之前的索引是(0,1,3),那么交换之后,就应该是(0,3,1)

多说一句,其实numpy高维数组的切片也是这样选取维度的。

这就是transpose和swapaxes函数的讲解了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值