看《利用python进行数据分析》,有些不大清楚numpy中transpose和swapaxes函数的原理,这篇文章写的比较清楚,转载过来方便个人随时阅读和温习
版权声明:本文为CSDN博主「ML_BOY」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文:numpy中transpose和swapaxes函数讲解
1.transpose()
这个函数如果括号内不带参数,就相当于转置,和.T效果一样,而今天主要来讲解其带参数。 我们看如下一个numpy的数组:
arr=np.arange(16).reshape((2,2,4))
arr=array([[[0,1,2,3],
[4,5,6,7]],
[[8,9,10,11],
[12,13,14,15]]])
那么有:
arr.transpose(2,1,0)
array([[[0,8],
[4,12]],
[[1,9],
[5,13]],
[[2,10],
[6,14]],
[[3,11],
[7,15]]])
为什么会是这样的结果呢,这是因为arr这个数组有三个维度,三个维度的编号对应为(0,1,2),比如这样,我们需要拿到7这个数字,怎么办,肯定需要些三个维度的值,7的第一个维度为0,第二个维度为1,第三个3,所以arr[0,1,3]则拿到了7。
arr[0,1,3] #结果就是7
这下应该懂了些吧,好,再回到transpose()这个函数,它里面就是维度的排序,比如我们后面写的transpose(2,1,0),就是把之前第三个维度转为第一个维度,之前的第二个维度不变,之前的第一个维度变为第三个维度,好那么我们继续拿7这个值来说,之前的索引为[0,1,3],按照我们的转换方法,把之前的第三维度变为第一维度,之前的第一维度变为第三维度,那么现在7的索引就是(3,1,0)
同理所有的数组内的数字都是这样变得,这就是transpose()内参数的变化。
2.swapaxes()
理解了上面,再来理解swapaxes()就很简单了,swapaxes接受一对轴编号,其实这里我们叫一对维度编号更好吧,比如:
arr.swapaxes(2,1) #就是将第三个维度和第二个维度交换
array([[[0,4],
[1,5],
[2,6],
[3,7]],
[[8,12],
[9,13],
[10,14],
[11,15]]])
还是拿我们的数字7来说,之前的索引是(0,1,3),那么交换之后,就应该是(0,3,1)
多说一句,其实numpy高维数组的切片也是这样选取维度的。
这就是transpose和swapaxes函数的讲解了