反函数连续性定理 反三角_共形映射与反函数

796475683bb51ae81fa8e6dc609353bd.png

复分析:

共形映射的研究动机是

两个开集间,是否存在全纯双射?

意义:

的几何结构很少,
的几何结构很好( 单位圆盘
最好)。

首先给出共形等价的定义:

命题:如果

是全纯的单射,那么对所有的
,
.特别的,
的逆映射)在其定义域内也是全纯的。

证明:(反证法)假设存在

使得
,那么对所有
附近的
,有
,其中
(因为此时
),并且函数
阶零点。

阶零点的原因:

其中

是非零的全纯函数,不管
多么趋向于
,因为

,当
足够小时在以
为中心的小圆周上
因为

,因为
在该圆周内至少有两个零点(代数基本定理,
)因此
在圆盘内也至少有两个零点(儒歇定理)。

因为我们假设

,所以由单射的题干可以知道
的两根不同。

的两根互异,矛盾于单性。

表示
的逆函数,则 因为
所以
的导数存在:

点是全纯的。

推论:

共形等价
,其中

反函数定理:

的,则存在
,
的一个开集,
的一个开集,满足有
的逆映射
,且两个线性映射的Jacobi矩阵互为倒数。

该定理说明如果从

的一个开集U到Rn的
类函数
的全导数在
可逆(也就是说,
的雅可比行列式不为零),那么
的附近具有反函数。也就是说,在
的某个邻域内,
的反函数存在。而且,反函数
也是
类的。

证明:

第一步:正规化:

首先将

分别进行平移化为

然后将Jacobi纠正为单位阵:

第二步:

证明G是双-Lipchitz函数:

等号成立条件:

,则

因为G是连续可微的,因此G的Jacobi矩阵是连续的,而

,由连续性可知
,因此

同理,由另一个方向的三角不等式可以知道,

第三步:在

上证明单射

因为

因此

又因为

单射可证

第四步:在

证明满射

目的是:

压缩映像原理:

满足
,其中E是有界闭集。则存在唯一的不动点

因为

所以

又因为

故也可以用压缩映像原理

第三四步证明了G的双射,由

可知

因此
,即
是连续的
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值