反函数连续性定理 反三角_对逆映射定理的证明的详细探讨

逆映射定理是十分重要的一个定理,它在理论上保证了逆映射的存在唯一性。在很早的时候,我们就接触过反函数这个概念,逆映射定理将我们对逆映射的直观认识加以推广,告诉我们,对于一阶连续可微的映射,在局部上总是存在唯一的逆映射的。

这篇文章将详细地阐释逆映射定理的一种直接证明方法,主要参考老师的课堂笔记和《流形上的微积分》一书。在开始之前,我们先补充一个预备知识:

引理1[1]

. 如
的内域中点
处达到极大(或极小),且
存在,则
.
证明
. 由于点
的内点,故
在包含点
的一个开区间内有定义,同时
在点
处应当取到极大值(极小值)。根据Fermat定理,有
.

下面我们陈述逆映射定理,并对它的证明思路加以解释。

定理1

是开集,
. 若
,则存在
的邻域
以及
的邻域
,使得:

(1)
是双射,故
限制在
上有逆映射

(2)
的;

(3)
,其中
.

刚接触一个陌生的数学命题时,对它先有一个直观的认识是很重要的。这条定理的大意是说,如果一个映射在某点“导数不为0”,那么在该点附近就会存在逆映射。

这个命题的结论(1)最不容易处理,证明

是单射或满射都不太容易。同时,如何应用“导数的行列式不为0”这个条件也很重要,又如何找到点
附近的邻域,使得
成为局部双射?我们不妨先从一元函数的情形入手以得到一些启发,见下图:

d32e8f8c0505e92ff1ddce3a63157932.png

不妨假设

,我们可以看到,由于
的连续性,
点附近的函数导数都大于0。这样,函数在点
的局部是单调的,因此是单射。同时,由于
连续,值域是一个区间,这样
还成为了一个双射。从这段讨论中我们可以看到,要利用
的条件,
的连续性是必不可少的;同时也看到,
可以说明
在局域上是单射,为此,我们有下面的引理:

引理2 若有条件同定理1,则存在

的一个邻域
,使得
,都有

其中
都是正常数。此时我们称
上是双边Lipschitz的,从而
是一个单射。

证明方法是比较简单的,直接对

作差估计即可。对这个命题有一个好的理解是:我们知道,如果
是一个线性映射,那么上述命题是成立的。现在由于
,对
作微分展开以后,
就可看做一个线性函数加上一个小扰动,这样,直观地猜测命题是对的。

引理2的证明

,由于
是可微的,故
,其中
. 于是,
.

根据Cauchy不等式,一方面有
,另一方面由于
,故
.

用Newton-Leibniz公式来估计
,有

由于
,并且
是一个线性映射,是连续的,因此当
取得充分小时,
一项可以充分的小。于是,存在一个
,使得
.

从而,可作三角估计如下:
,
.

命题得证。
是单射是显然的,因为
.

引理2告诉我们

上是单射,如果把值域
取出来,那么
自然是一个双射。但是逆映射定理希望我们在两个开集
之间建立双射,这样的双射是否存在,又如何得到,这便是需要继续回答的问题。

定理1的证明 由于

,且
是开集,因此不妨假设对任意
都成立。
Part 1 先接着引理2的步伐得到一个双射,我们希望构造
的邻域
,使得
是双射。从引理2我们知道,可以得到一个
的邻域
,使
在其上是单射。当然,我们也可以认为
是单射。记
,则
是一个闭集。由于
是连续映射,
是紧集,故
也是紧的。

为使
,我们想说明
的边界保持一定距离,也即说明存在一个正数
,使得
. 由于
是一个单射,
,因此
. 但这还不够,还要说明
才行。假如
,那么便存在
中的一个点列
,有
. 由于
是紧的,于是
会收敛到
中的一个点
. 从而,
,出现矛盾。因此,
. 注意,我们这时还不能说
的内点,因为
的邻域未必就包含在
中。

定义
,下面我们证明
是包含于
的开集,即要说明
,都有
,使得
. 为此,我们定义一个距离函数
. 由于
是一个连续函数,且
是一个闭集,因此
上可以取到最小值。我们想说明这个最小值就是0。根据上面一段话,这个最小值一定不会在
上取到,因为
. 于是
的最小值在
的内域上一点
取到,根据引理1,
. 也即对于
,有
,

由已知条件,
的行向量组线性无关,因此
,故
. 这样我们就说明了
.

由于
开,
是一个连续映射,故
也是开集,并且满足
是一个双射。至此我们证明了结论(1)。
Part 2 下面我们要从
的连续可微性得到
的连续可微性。由于
上连续可微,于是
,有
,其中
. 用
代入上式有,
. 由于
,

(其中最后一个等号用了引理2),故
是可微的。同时,有

由于
可微并且求逆是连续映射,因此
是连续的。从而
. 至此,整个命题证毕。

参考

  1. ^Spivak, M. 流形上的微积分[M]. 齐民友, 路见可. 人民邮电出版社: 2006
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值