数学分析 函数的连续性(第4章)

一.连续性
1.函数在1点的连续性
(1)增量:
在这里插入图片描述
(2)连续性的定义(3种):
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
2.左(右)连续性:
在这里插入图片描述
3.函数连续的充要条件(定理4.1):

函数f在点x0处连续的充要条件是:f在x0处既是左连续的,又是右连续的

4.间断点
(1)定义:
在这里插入图片描述
(2)分类:

函数f的间断点x0的情况必为下述3种之一::
①f在x0处无定义
②f在x0处有定义但 lim ⁡ x → x 0 f ( x ) \displaystyle \lim_{x \to x_0}{f(x)} xx0limf(x)不存在
③f在x0处有定义且 lim ⁡ x → x 0 f ( x ) \displaystyle \lim_{x \to x_0}{f(x)} xx0limf(x)存在(指有限极限,不包括非正常极限),但 lim ⁡ x → x 0 f ( x ) \displaystyle \lim_{x \to x_0}{f(x)} xx0limf(x) f ( x 0 ) f(x_0) f(x0)
据此,可对函数的间断点进行分类

①第一类间断点:左/右极限均存在,仅包括以下2类
–i.可去间断点
在这里插入图片描述
可去间断点可通过下述方法转换成连续点:
在这里插入图片描述
–ii.跳跃间断点
在这里插入图片描述

第二类间断点:左/右极限至少有1个不存在(即其他形式的间断点),除以下2类还有很多类
–i.无穷间断点
–ii.震荡间断点

5.连续函数:
在这里插入图片描述
二.连续函数的性质
1.连续函数的局部性质
(1)局部有界性(定理4.2):

若函数f在点x0处连续,则f在某U(x0)上有界

(2)局部保号性(定理4.3):

若函数f在点x0处连续,且f(x)>0(或<0),则对∀0<r<f(x0)(或0<r<-f(x0),∃某U(x0),使对∀x∈U(x0),有f(x)>r(或f(x)<-r)
在具体应用局部保号性时,常取r= 1 2 f ( x 0 ) \frac{1}{2}f(x_0) 21f(x0),则当 f ( x 0 ) > 0 f(x_0)>0 f(x0)>0时,∃某U(x0),使在其上有f(x)> 1 2 f ( x 0 ) \frac{1}{2}f(x_0) 21f(x0)

(3)有限次四则运算不改变连续性(定理4.4):

若函数f,g在点x0处连续,则 f ± g , f ⋅ g , f g ( g ( x 0 ) ≠ 0 ) f±g,f·g,\frac{f}{g}(g(x_0)≠0) f±g,fg,gf(g(x0)=0)也都在x0处连续

(4)有限次复合运算不改变连续性(定理4.5):

若函数f在点x0处连续,g在点u0处连续, u 0 = f ( x 0 ) u_0=f(x_0) u0=f(x0),则复合函数 g ○ f g○f gf在点x0处连续
根据连续性的定义,结论也可表示为 lim ⁡ x → x 0 g ( f ( x ) ) = g ( lim ⁡ x → x 0 f ( x ) ) = g ( f ( x 0 ) ) \displaystyle \lim_{x \to x_0}{g(f(x))}=g(\displaystyle \lim_{x \to x_0}{f(x)})=g(f(x_0)) xx0limg(f(x))=g(xx0limf(x))=g(f(x0))
在这里插入图片描述

扩展到可去间断点处:在这里插入图片描述

2.闭区间上连续函数的性质
(1)最大值与最小值:
在这里插入图片描述
(2)最大/最小值定理(定理4.6):

若函数f在闭区间[a,b]上连续,则f在[a,b]上有最大值和最小值

引理(有界性定理):若函数f(x)在闭区间[a,b]上连续,则f(x)在[a,b]上有界
在这里插入图片描述

定理4.6的证明:
在这里插入图片描述
在这里插入图片描述

(3)介值性定理(定理4.7):

设函数f在闭区间[a,b]上连续,且f(a)≠f(b),若μ为介于f(a)与f(b)间的任何实数(f(a)<μ<f(b)或f(a)>μ>f(b)),则至少∃1点x0∈(a,b),使f(x0)=μ
这个定理表面:若f在[a,b]上连续,不妨设f(a)<f(b),则f在[a,b]上必能取得区间[f(a),f(b)]上的一切值,即[f(a),f(b)]⫋f([a,b])
该命题的几何意义如图4-2;下面的推论是定理4.7的等价命题
在这里插入图片描述
在这里插入图片描述

推论(根的存在定理):若函数f在闭区间[a,b]上连续,且f(a)·f(b)<0,则至少∃1点x0∈(a,b),使f(x0)=0,即方程f(x)=0在(a,b)上至少有1个根
这个推论的几何解释如图4.3

在这里插入图片描述

由定理4.7可得性质:若f在区间I上连续且不为常量,则值域f(I)也是1个区间
特别地,若I为闭区间[a,b],f在[a,b]上的最大值/最小值为M/m,则f([a,b])=[m,M]
又若f为[a,b]上的递增(或减)连续函数且不为常函数,则f([a,b])=[f(a),f(b)] (或[f(b),f(a)])

3.反函数的连续性

定理4.8:若f在[a,b]上严格单调并连续,则其反函数f-1在其定义域[f(a),f(b)] (或[f(b),f(a)])上连续
在这里插入图片描述

三.一致连续性
1.定义:
在这里插入图片描述
在这里插入图片描述
2.一致连续性与连续性:

比如y= 1 x \frac{1}{x} x1在(0,1]上连续但不一致连续
在这里插入图片描述

3.一致连续性定理(定理4.9):

若f在闭区间[a,b]上连续,则f在[a,b]上一直连续
在这里插入图片描述
在这里插入图片描述

4.任意区间上一致连续性的充要条件:

若f(x)定义在区间I上,f(x)在I上一致连续的充要条件是:对∀数列{x’n},{x’'n}⫋I,若 lim ⁡ n → ∞ ( x n ′ − x n ′ ′ ) = 0 \displaystyle \lim_{n \to \infty}{(x'_n-x''_n)}=0 nlim(xnxn)=0,则 lim ⁡ n → ∞ [ f ( x n ′ ) − f ( x n ′ ′ ) ] = 0 \displaystyle \lim_{n \to \infty}{[f(x'_n)-f(x''_n)]}=0 nlim[f(xn)f(xn)]=0
在这里插入图片描述
在这里插入图片描述
如: f ( x ) = 1 x ( 0 < x ≤ 1 ) f(x)=\frac{1}{x}(0<x≤1) f(x)=x1(0<x1),取 x n ′ = 1 n n ≤ 1 x'_n=\frac{1}{n^n}≤1 xn=nn11, x n ′ ′ = 1 n ≤ 1 x''_n=\frac{1}{n}≤1 xn=n11,则 lim ⁡ n → ∞ ( x n ′ − x n ′ ′ ) = lim ⁡ n → ∞ 1 n n − lim ⁡ n → ∞ 1 n = 0 \displaystyle \lim_{n \to \infty}{(x'_n-x''_n)}=\displaystyle \lim_{n \to \infty}{\frac{1}{n^n}}-\displaystyle \lim_{n \to \infty}{\frac{1}{n}}=0 nlim(xnxn)=nlimnn1nlimn1=0,但 lim ⁡ n → ∞ [ f ( x n ′ ) − f ( x n ′ ′ ) ] = lim ⁡ n → ∞ n n − lim ⁡ n → ∞ n = + ∞ ≠ 0 \displaystyle \lim_{n \to \infty}{[f(x'_n)-f(x''_n)]}=\displaystyle \lim_{n \to \infty}{n^n}-\displaystyle \lim_{n \to \infty}{n}=+\infty≠0 nlim[f(xn)f(xn)]=nlimnnnlimn=+=0,故 f ( x ) = 1 x f(x)=\frac{1}{x} f(x)=x1在(0,1]上不一致连续

四.初等函数的连续性
1.初等函数的连续性
(1)基本初等函数的连续性(定理4.12):

一切基本初等函数都是其定义域上的连续函数

(2)初等函数的连续性(定理4.13):

任何初等函数都是其定义区间上的连续函数

2.证明
(1)三角函数连续性:
在这里插入图片描述
(2)反三角函数的连续性:
在这里插入图片描述
(3)幂函数:

–i.对多项式函数:
在这里插入图片描述
–ii.对具有整数次幂的幂函数:
在这里插入图片描述
–iii.对具有有理数次幂的幂函数:
在这里插入图片描述
–iv.对具有实数次幂的幂函数:
在这里插入图片描述

(4)指数函数:

–i.定理4.10:设a>0,α,β为∀2个实数,则有aα·aβ=aα+β,(aα)β=aαβ
在这里插入图片描述
–ii.定理4.11:指数函数ax(a>0)在R上是连续的
在这里插入图片描述

(5)对数函数:
在这里插入图片描述

  • 5
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 《数学分析原理》是一本经典的数学教材,分为四册,原著作者是Walter Rudin。第一册是《数学分析原理》中的第一部分,主要介绍了实数系统的基本概念和性质。 这本教材通过严谨的数学推导和逻辑论证,深入阐述了实数的定义、序、极限等概念。作者首先从实数的集合性质入手,引入了上界、下界和最小上界、最大下界的概念,并给出了实数的完备性定理。 在接下来的节中,作者详细介绍了实数的代数性质,包括实数的四则运算、绝对值等。然后,他引入了实数的序性质,证明了实数的三角不等式、稠密性等重要性质。通过对实数集合的讨论,作者引入了序列和极限的概念,并详细讲解了极限的性质和计算方法。 除了极限的概念,第一册还包括对函数连续性的讨论。作者通过定义实数上的函数,引入了导数和微积分的概念,并引导读者理解连续函数和一些常见的连续函数的性质。 总的来说,第一册《数学分析原理》通过从实数开始的推导和论证,为读者打下了扎实的基础。这本教材语言简洁、逻辑严密,适合对数学分析感兴趣的高年级本科生或研究生学习。它不仅帮助读者理解了实数系统的基本性质,还培养了读者的数学思维和推理能力。总体而言,这本教材对于深入研究数学分析具有重要的参考价值。 ### 回答2: 《数学分析原理》是由Walter Rudin所著的一本经典数学教材,在数学分析领域享有很高的声誉。这本教材被广泛用于大学本科和研究生级别的数学课程。 《数学分析原理》的第一册主要介绍了实数系、数列和级数、连续函数、微分和积分等基本概念和定理。这些内容奠定了进一步学习和理解高等数学、数学分析和实变函数等高级数学学科的基础。 在实数系的学习中,原理部分主要讨论了实数的定义和性质,从Dedekind切割和Cauchy数列两个角度引入实数,证明了实数的完备性,即实数集的确界性质。 数列和级数部分,介绍了数列和级数的定义,研究了它们的性质和收敛标准。重点讨论了极限、上极限、下极限的概念,并给出了相关的例子和证明。此外,还对级数的性质进行了详细的讨论,如绝对收敛和条件收敛等。 在连续函数的学习中,重点介绍了连续函数的定义和性质,包括介值定理、零点定理、反函数定理等。证明了闭区间上连续函数的性质,以及极限、一致连续等相关概念。 微分和积分是数学分析中的重要内容,也是这本教材的重点之一。在微分方面,讲解了导数的概念、求导法则和高阶导数等内容。在积分方面,介绍了黎曼积分的定义和性质,并展示了一些基本的积分计算方法。 总的来说,数学分析原理第一册提供了一种严格而清晰的数学思维方式,帮助读者建立数学分析的基本概念和原理,并培养抽象、逻辑思维能力。它对于数学专业的学生必读,也是对数学思维进行训练的重要工具。PDF格式的电子书可以方便学习者在电脑、手机等设备上随时查阅和学习。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值