共形几何1

自己的笔记,可以忽略

拱形变换保圆

三维曲面上的两个相交的弧线,进行angle preserve变换之后在变换后的圆盘上,两条弧线的角度依然相等这是保形变换

在圆盘上绘制圆圈,将这些圆圈映射到曲面上,圆圈形状不变在surface上面依然是圆圈,大小变化但是形状不变,保形变换,preserve local shapes conformal mapping

quasi-conformal mapping 拟拱形变换

平面圆盘上的圆形变换到surface是椭圆,一般映射是把椭圆映射成圆,而共形映射是把圆映射成圆

 

亏格是曲面上有多少个环柄,没有环柄代表是0亏格曲面,所有0亏格的曲面都可以共形映射到单位圆的曲面上保角

亏格1的曲面可以映射到平面上,平行四边形,每个周期是一个平行四边形

亏格2的球面 可以计算一个黎面度量使其高斯曲率不等于-1成为双曲度量,平铺到双曲空间里,一个颜色代表一个周期每个周期都能覆盖整个曲面。万有覆盖空间

单值化定理-设计算法能handle三种平面上述三种亏格映射面。数学上,曲面单值化定理是说任何曲面上都有一个常高斯曲率度量。事实上,在每一个给定的共形类中我们都可以找到一个常高斯曲率的度量。等价的说,用复分析的语言,任何单连通黎曼曲面都共形等价于复平面单位圆盘黎曼球面三者之一。

有边界的曲面,边界被映射为圆

最主要的三种算法

调和映射,处理亏格0映射

霍奇理论

处理亏格(genus)1的映射

Ricci流处理高亏格曲面

1,亏格0surface 调和映射到光滑球面上,弹性形变能量最少为调和映射

2,全纯微分形式对亏格为1的surface,在曲面上找一个切向量场,这个向量场梯度为0,散度为0,类似静电场或磁场。把这个向量场点点旋转90°得到共轭的另外一个向量场,这一对向量场被称为全微分形式,这种向量场的存在性,唯一性有霍奇理论保证。

3,Ricci流,形变曲面的黎曼度量,形变的速度和当前黎曼度量所诱导的的高斯曲率成正比。这样曲面上的高斯曲率就会演化,演化方程是一种非线性的扩散反应方程,最后他的kechi曲率会变成一个常数,这时候得到一个黎曼度量。他的高斯曲率为-1就是你想要的

这三个方法是核心

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值