自己的笔记,可以忽略
拱形变换保圆
三维曲面上的两个相交的弧线,进行angle preserve变换之后在变换后的圆盘上,两条弧线的角度依然相等这是保形变换
在圆盘上绘制圆圈,将这些圆圈映射到曲面上,圆圈形状不变在surface上面依然是圆圈,大小变化但是形状不变,保形变换,preserve local shapes conformal mapping
quasi-conformal mapping 拟拱形变换
平面圆盘上的圆形变换到surface是椭圆,一般映射是把椭圆映射成圆,而共形映射是把圆映射成圆
亏格是曲面上有多少个环柄,没有环柄代表是0亏格曲面,所有0亏格的曲面都可以共形映射到单位圆的曲面上保角
亏格1的曲面可以映射到平面上,平行四边形,每个周期是一个平行四边形
亏格2的球面 可以计算一个黎面度量使其高斯曲率不等于-1成为双曲度量,平铺到双曲空间里,一个颜色代表一个周期每个周期都能覆盖整个曲面。万有覆盖空间
单值化定理-设计算法能handle三种平面上述三种亏格映射面。数学上,曲面的单值化定理是说任何曲面上都有一个常高斯曲率的度量。事实上,在每一个给定的共形类中我们都可以找到一个常高斯曲率的度量。等价的说,用复分析的语言,任何单连通的黎曼曲面都共形等价于复平面、单位圆盘和黎曼球面三者之一。
有边界的曲面,边界被映射为圆
最主要的三种算法
调和映射,处理亏格0映射
霍奇理论
处理亏格(genus)1的映射
Ricci流处理高亏格曲面
1,亏格0surface 调和映射到光滑球面上,弹性形变能量最少为调和映射
2,全纯微分形式对亏格为1的surface,在曲面上找一个切向量场,这个向量场梯度为0,散度为0,类似静电场或磁场。把这个向量场点点旋转90°得到共轭的另外一个向量场,这一对向量场被称为全微分形式,这种向量场的存在性,唯一性有霍奇理论保证。
3,Ricci流,形变曲面的黎曼度量,形变的速度和当前黎曼度量所诱导的的高斯曲率成正比。这样曲面上的高斯曲率就会演化,演化方程是一种非线性的扩散反应方程,最后他的kechi曲率会变成一个常数,这时候得到一个黎曼度量。他的高斯曲率为-1就是你想要的
这三个方法是核心