漫步数学分析三十八——反函数定理

注意 Jf(x)0 意味着 Df(x):RnRn 是线性同构(即它的矩阵是可逆的),从而根据事实:最佳线性近似是可逆的,我们想得出函数本身是可逆的。

然而,需要一些限制条件。为此考虑 f:RR ,如果 f C1 f(x0)0 ,那么 f x0的邻域内是可逆的。几何上来看这非常明显,因为 f(x0)0 意味着 f x0附近斜率不为零。(如图1)


这里写图片描述
图1

因此我们主要关注的是局部可逆性,即 x 靠近x0 y 靠近y0=f(x0) f(x) 的可逆性。

根据链式法则很容易计算可逆函数 f1(y) 的导数: f1(f(x))=x ,我们得出 (df1/dy)f(x)=1 ,所以

df1dy|y=f(x)=1df/dx

为了验证 f1 是可微的需要更小心点。

如果 f(x0)=0 ,那么 f x0附近可能可逆,也可能不可逆;如图1所示, f x1附近是不可逆的,但是 f(x)=x3 x0=0 是可逆的。那么当 f(x0)=0 时我们的不出结论。通常来讲, f(x0)0 不能保证对所有的 y,f(x)=y 有解。例如,在图1中不存在 x3 使得 f(x3)=y1 。另外从图中也能看出 f(x0)=f(x2) 的解不唯一,但当我们只考虑 x0 很小的邻域时解是唯一的。

因此我们考虑 f f(x0)附近的可逆性,即 y 靠近f(x0)时,使得 f(x)=y 的某些靠近 x0 x 值是唯一的,有多靠近这个问题需要更细节分析,不过目前而言这个不重要。

定理1包含单变量的情况,它仅仅是一种特殊情况。

1 ARn 是开集且 f:ARnRn C1 类(即, Df 存在且连续),令 x0A 并假设 Jf(x0)0 ,那么存在 x0 的邻域 U f(x0) 的开邻域 W 满足f(U)=W f 存在C1 f1:WU 。此外,对于 yW,x=f1(y) ,我们有

Df1(y)=[Df(x)]1

Df(x) 的逆意味着线性映射(对应于可逆矩阵)的逆,如果 f Cp类, p1 ,那么 f1 同样如此。

我们讲 f 有可逆函数f1意味着给定 yW ,有唯一的 xU 满足 f(x)=y

定理的证明依赖一个存在的论据,即当 y 靠近y0时我们需要证明存在 x 使得f(x)=y,最基本的工具是压缩映射原理;参看5.6节。在5.6节中我们看到这个结果如何用来证明简单积分方程解的存在性。在7.5节我们将利用同样的论据来求解微分方程。

1 考虑方程 (x4+y4)/x=u(x,y),sinx+cosy=v(x,y) ,那么在哪些点附近我们可以用 u,v 的形式求解出 x,y

这里的函数是 u(x,y)=f1(x,y)=(x4+y4)/x,v(x,y)=f2(x,y)=sinx+cosy ,我们想知道在哪些点附近我们可以求出 x,y ,根据逆函数定理,我们必须先计算出 (f1,f2)/(x,y) 。对于 f=(f1,f2) ,我们取其定义域为 A={(x,y)R2|x0} ,接下来

(f1,f2)(x,y)=f1xf2xf1yf2y=3x4y4x2cosx4y3xsiny=(siny)x2(y43x4)4y3xcosx

因此,对于没消失的点,我们可以用 u,v 来表示 x,y 。换句哈说,我们可以在靠近 x,y 的附近求出 x,y ,这种问题通常无法显式求出。例如如果 x0=π/2,y0=π/2 ,那么我们可以在 x0,y0 附近求出 x,y ,因为 (f1,f2)/(x,y)0

根据定理1,通过求雅克比矩阵的逆就能得到导数 x/u 等,对于 2×2 的情况就是

xu=1Jf(x,y)vy,xv=1Jf(x,y)uy;

yu=1Jf(x,y)vy,yv=1Jf(x,y)uy

在本例中

xu=(x2siny){(siny)(y43x4)4y3xcosx}

注意这个答案使用 x,y 而不是 u,v 来表示,所以 x/u 是在点 u(x,y),v(x,y) 处计算出来的。

逆函数定理是非常有用的,因为它告诉我们方程有解并说明如何求出解的微分,虽然可能无法显式求解出方程。

2 u(x,y)=excosy,u(x,y)=exsiny ,说明 (x,y)(u(x,y),v(x,y)) 是局部可逆的,但是本身不可逆。


(u,v)(x,y)=uxvxuyvy=excosyexsinyexsinyexcosy=e2x(cos2y+sin2y)=e2x0

因此根据可逆函数定理,映射是局部可逆的。然而因为

u(x,y+2π)=u(x,y),v(x,y+2π)=v(x,y)

所以它不是(全局)一对一的。

注意对于 f:RR ,如果 f 是可微的且对于所有的x,f0,那么 f(x) 要么 >0 要么 <0 <script type="math/tex" id="MathJax-Element-114"><0</script>,因为 f 满足中值定理。从而 f 肯定是(全局)一对一的,f要么一直递增要么一直递减,上面的例子表明 R2 中不一定如此。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值