注意Jf(x)≠0意味着Df(x):Rn→Rn是线性同构(即它的矩阵是可逆的),从而根据事实:最佳线性近似是可逆的,我们想得出函数本身是可逆的。
然而,需要一些限制条件。为此考虑f:R→R,如果f是C1且f′(x0)≠0,那么f在x0的邻域内是可逆的。几何上来看这非常明显,因为f′(x0)≠0意味着f在x0附近斜率不为零。(如图1)
图1
因此我们主要关注的是局部可逆性,即x靠近x0与y靠近y0=f(x0)时f(x)的可逆性。
根据链式法则很容易计算可逆函数f−1(y)的导数:f−1(f(x))=x,我们得出(df−1/dy)⋅f′(x)=1,所以
df−1dy|y=f(x)=1df/dx
为了验证f−1是可微的需要更小心点。
如果f′(x0)=0,那么f在x0附近可能可逆,也可能不可逆;如图1所示,f在x1附近是不可逆的,但是f(x)=x3在x0=0 是可逆的。那么当f′(x0)=0时我们的不出结论。通常来讲,f′(x0)≠0不能保证对所有的y,f(x)=y有解。例如,在图1中不存在x3使得f(x3)=y1。另外从图中也能看出f(x0)=f(x2)的解不唯一,但当我们只考虑x0很小的邻域时解是唯一的。
因此我们考虑f在f(x0)附近的可逆性,即y靠近f(x0)时,使得f(x)=y的某些靠近x0的x值是唯一的,有多靠近这个问题需要更细节分析,不过目前而言这个不重要。
定理1包含单变量的情况,它仅仅是一种特殊情况。
定理1 令A⊂Rn是开集且f:A⊂Rn→Rn是C1类(即,Df存在且连续),令x0∈A 并假设Jf(x0)≠0,那么存在x0的邻域U与f(x0) 的开邻域W满足f(U)=W,f存在C1逆f−1:W→U。此外,对于y∈W,x=f−1(y),我们有
Df−1(y)=[Df(x)]−1
Df(x)的逆意味着线性映射(对应于可逆矩阵)的逆,如果f是Cp类,p≥1,那么f−1同样如此。
我们讲f有可逆函数f−1意味着给定y∈W,有唯一的x∈U满足f(x)=y。
定理的证明依赖一个存在的论据,即当y靠近y0时我们需要证明存在x使得f(x)=y,最基本的工具是压缩映射原理;参看5.6节。在5.6节中我们看到这个结果如何用来证明简单积分方程解的存在性。在7.5节我们将利用同样的论据来求解微分方程。
例1:考虑方程(x4+y4)/x=u(x,y),sinx+cosy=v(x,y),那么在哪些点附近我们可以用u,v的形式求解出x,y?
解:这里的函数是u(x,y)=f1(x,y)=(x4+y4)/x,v(x,y)=f2(x,y)=sinx+cosy,我们想知道在哪些点附近我们可以求出x,y,根据逆函数定理,我们必须先计算出∂(f1,f2)/∂(x,y)。对于f=(f1,f2),我们取其定义域为A={(x,y)∈R2|x≠0},接下来
∂(f1,f2)∂(x,y)=∣∣∣∣∣∣∂f1∂x∂f2∂x∂f1∂y∂f2∂y∣∣∣∣∣∣=∣∣∣∣3x4−y4x2cosx4y3x−siny∣∣∣∣=(siny)x2(y4−3x4)−4y3xcosx
因此,对于没消失的点,我们可以用u,v来表示x,y。换句哈说,我们可以在靠近x,y的附近求出x,y,这种问题通常无法显式求出。例如如果x0=π/2,y0=π/2,那么我们可以在x0,y0附近求出x,y,因为∂(f1,f2)/∂(x,y)≠0。
根据定理1,通过求雅克比矩阵的逆就能得到导数∂x/∂u等,对于2×2的情况就是
∂x∂u=1Jf(x,y)∂v∂y,∂x∂v=−1Jf(x,y)∂u∂y;
∂y∂u=−1Jf(x,y)∂v∂y,∂y∂v=1Jf(x,y)∂u∂y
在本例中
∂x∂u=−(x2siny){(siny)(y4−3x4)−4y3xcosx}
注意这个答案使用x,y而不是u,v来表示,所以∂x/∂u是在点u(x,y),v(x,y)处计算出来的。
逆函数定理是非常有用的,因为它告诉我们方程有解并说明如何求出解的微分,虽然可能无法显式求解出方程。
例2:令u(x,y)=excosy,u(x,y)=exsiny,说明(x,y)↦(u(x,y),v(x,y))是局部可逆的,但是本身不可逆。
解:
∂(u,v)∂(x,y)=∣∣∣∣∣∣∂u∂x∂v∂x∂u∂y∂v∂y∣∣∣∣∣∣=∣∣∣excosyexsiny−exsinyexcosy∣∣∣=e2x(cos2y+sin2y)=e2x≠0
因此根据可逆函数定理,映射是局部可逆的。然而因为
u(x,y+2π)=u(x,y),v(x,y+2π)=v(x,y)
所以它不是(全局)一对一的。
注意对于f:R→R,如果f是可微的且对于所有的x,f′≠0,那么f′(x)要么>0要么<0,因为f′满足中值定理。从而f肯定是(全局)一对一的,f要么一直递增要么一直递减,上面的例子表明R2中不一定如此。