python编程标准化_Python数据预处理:彻底理解标准化和归一化

数据预处理中,为了消除量纲影响和加速模型收敛,常用最大-最小规范化和Z-标准化。本文详细介绍了这两种方法,通过实例展示了如何在Python中使用sklearn库进行操作,并对比了两者的差异,强调了标准化对异常值的鲁棒性。
摘要由CSDN通过智能技术生成

数据预处理

数据中不同特征的量纲可能不一致,数值间的差别可能很大,不进行处理可能会影响到数据分析的结果,因此,需要对数据按照一定比例进行缩放,使之落在一个特定的区域,便于进行综合分析。

常用的方法有两种:

最大 - 最小规范化:对原始数据进行线性变换,将数据映射到[0,1]区间

7ad1e3b3-ef14-4534-8209-34a0bdcbef64.png

Z-@R_502_182@标准化:将原始数据映射到均值为0、标准差为1的分布上

d03d6a91-bde4-43f9-b1f4-3c83f2c06537.png

为什么要标准化/归一化?

提升模型精度:标准化/归一化后,不同维度之间的特征在数值上有一定比较性,可以大大提高分类器的准确性。

加速模型收敛:标准化/归一化后,最优解的寻优过程明显会变得平缓,更容易正确的收敛到最优解。

如下图所示:

0d8c4426-332d-471d-962c-488620bdc6a2.png

36dfec3d-92cf-4849-8e3d-7c2a691261da.png

哪些机器学习算法需要标准化和归一化

1)需要使用梯度下降和计算距离的模型要做归一化,因为不做归一化会使收敛的路径程z字型下降,导致收敛路径太慢,而且不容易找到最优解,归一化之后加快了梯度下降求最优解的速度,并有可能提高精度。比如说线性回归、逻辑回归、adaboost、xgboost、GBDT、SVM、NeuralNetwork等。需要计算距离的模型需要做归一化,比如说KNN、KMeans等。

2)概率模型、树形结构模型不需要归一化,因为它们不关心变量的值,而是关心变量的分布和变量之间的条件概率,如决策树、随机森林。

2dac94c3-3b44-4106-ab3a-abfa28774785.png

彻底理解标准化和归一化

765e47fb-0a7d-4bbb-a4a9-ee8cae21fdd3.png

示例数据集包含一个自变量(已购买)和三个因变量(国家,年龄和薪水),可以看出用薪水范围比年龄宽的多,如果直接将数据用于机器学习模型(比如KNN、KMeans),模型将完全有薪水主导。

#导入数据

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

df = pd.read_csv('Data.csv')

缺失值均值填充,处理字符型变量

df['Salary'].fillna((df['Salary'].mean()),inplace= True)

df['Age'].fillna((df['Age'].mean()),inplace= True)

df['Purchased'] = df['Purchased'].apply(lambda x: 0 if x=='No' else 1)

df=pd.get_dummies(data=df,columns=['Country'])

cbf4ff1a-61d2-4284-96df-7976b2f6b0db.png

最大 - 最小规范化

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

scaler.fit(df)

scaled_features = scaler.transform(df)

df_MinMax = pd.DataFrame(data=scaled_features,columns=["Age","Salary","Purchased","Country_France","Country_Germany","Country_spain"])

d350617b-1c51-4b40-be21-8f5f4a41631c.png

Z-@R_502_182@标准化

from sklearn.preprocessing import StandardScaler

sc_X = StandardScaler()

sc_X = sc_X.fit_transform(df)

sc_X = pd.DataFrame(data=sc_X,"Country_spain"])

ebd911ed-e8f6-41af-9139-adaa8409f311.png

import seaborn as sns

import matplotlib.pyplot as plt

import statistics

plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']

fig,axes=plt.subplots(2,3,figsize=(18,12))

sns.distplot(df['Age'],ax=axes[0,0])

sns.distplot(df_MinMax['Age'],1])

axes[0,1].set_title('归一化方差:% s '% (statistics.stdev(df_MinMax['Age'])))

sns.distplot(sc_X['Age'],2])

axes[0,2].set_title('标准化方差:% s '% (statistics.stdev(sc_X['Age'])))

sns.distplot(df['Salary'],ax=axes[1,0])

sns.distplot(df_MinMax['Salary'],1])

axes[1,1].set_title('MinMax:Salary')

axes[1,1].set_title('归一化方差:% s '% (statistics.stdev(df_MinMax['Salary'])))

sns.distplot(sc_X['Salary'],2])

axes[1,2].set_title('StandardScaler:Salary')

axes[1,2].set_title('标准化方差:% s '% (statistics.stdev(sc_X['Salary'])))

可以看出归一化比标准化方法产生的标准差小,使用归一化来缩放数据,则数据将更集中在均值附近。这是由于归一化的缩放是“拍扁”统一到区间(仅由极值决定),而标准化的缩放是更加“弹性”和“动态”的,和整体样本的分布有很大的关系。所以归一化不能很好地处理离群值,而标准化对异常值的鲁棒性强,在许多情况下,它优于归一化。

846ddb7a-2e54-4dd0-9b30-4a51f4b78085.jpg

总结

如果觉得编程之家网站内容还不错,欢迎将编程之家网站推荐给程序员好友。

本图文内容来源于网友网络收集整理提供,作为学习参考使用,版权属于原作者。

如您喜欢交流学习经验,点击链接加入交流1群:1065694478(已满)交流2群:163560250

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值