合成孔径成像算法与实现_行易道两篇车载SAR成像论文被IEEE录用

行易道的两篇车载SAR成像论文被IEEE录用,介绍了车载短程FMCW雷达实现的SAR系统及高精度聚焦算法,应用于智能停车空间检测。该技术能实现实时高分辨率成像,不受速度限制,可扩展自动泊车场景,提升检测精度,降低硬件成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

c4a63dedfc2f507cecacbf81752c69f5.gif

日前,行易道关于SAR(合成孔径雷达)成像技术车载应用的两篇论文分别被IEEE MTT-S(微波理论与技术协会)主办的第六届智能移动微波国际会议(ICMIM 2020,奥地利,7月)和第11届IEEE传感器阵列和多通道信号处理国际会议(IEEE SAM 2020,杭州,6月)录用(Invited Paper)。

“Implementation of Real-time Automotive SAR Imaging”  

《汽车SAR实时成像的实现》

“Intelligent Parking Space Detection Based on Automotive SAR” 

《基于汽车SAR成像的智能车位识别》

早在2016年行易道实现并发布了第一代79GHz车载SAR成像雷达系统,并在2018年公开发布在车载状态下对非合作目标实时成像成果。2019年行易道经过近千公里不同场景的路试完成了对SAR应用场景的验证,实现了第二代79GHz SAR - 车载近距成像雷达SSAR的研制。

c476010e33e066595a79d8aa5efb3c66.png

论文详述了利用车载短程调频连续波(FMCW)雷达实现的汽车合成孔径雷达(SAR)系统及其处理算法。该算法将波数

将星载SAR成像代码改为车载SAR成像代码需要考虑以下几个方面: 1. 数据预处理:车载SAR成像需要对原始数据进时域去斜校正、距离向压缩、幅度补偿等处理,这些处理星载SAR成像有所不同。 2. SAR成像算法车载SAR成像星载SAR成像成像算法上有所不同,车载SAR成像通常使用基于运动补偿的成像算法,而星载SAR成像则主要使用基于相位历程的成像算法。 3. 图像后处理:车载SAR成像和星载SAR成像在图像后处理上也有所不同,例如伪彩色处理、对比度增强、噪声去除等处理方式可能会有所不同。 因此,将星载SAR成像代码改为车载SAR成像代码需要根据具体情况进调整和优化。需要注意的是,车载SAR成像受到车辆运动的影响,需要进运动补偿处理,同时车载SAR成像也需要考虑车辆的高度和姿态等因素。以下是一个简单的车载SAR成像代码示例,仅供参考: 数据预处理: ```matlab % 读入数据 rawdata = readDataFile('datafile.dat'); % 时域去斜校正 rawdata = slantCorrection(rawdata, 0.2); % 距离向压缩 rawdata = rangeCompression(rawdata, 0.8); % 调整原始数据矩阵的大小 rawdata = resizeData(rawdata, 1024, 1024); % 幅度补偿 rawdata = amplitudeCompensation(rawdata, 0.2); % 运动补偿 rawdata = motionCompensation(rawdata, 0.5); ``` SAR成像算法: ```matlab % 初始化SAR成像参数 parameters = initParameters(); % 调用车载SAR成像函数得到成像结果 result = carSarImaging(rawdata, parameters); ``` 图像后处理: ```matlab % 伪彩色处理 result = pseudocolor(result); % 对比度增强 result = contrastEnhancement(result, 0.5); % 噪声去除 result = noiseReduction(result, 0.2); % 显示成像结果 imshow(result); ``` 其中,`readDataFile`函数用于读取SAR数据文件,`slantCorrection`函数用于时域去斜校正,`rangeCompression`函数用于距离向压缩,`resizeData`函数用于调整原始数据矩阵的大小,`amplitudeCompensation`函数用于幅度补偿,`motionCompensation`函数用于运动补偿处理。`initParameters`函数用于初始化SAR成像参数,`carSarImaging`函数用于进车载SAR成像。`pseudocolor`函数用于伪彩色处理,`contrastEnhancement`函数用于对比度增强,`noiseReduction`函数用于噪声去除。最后,使用`imshow`函数显示成像结果。需要注意的是,这只是一个简单的车载SAR成像代码示例,实际应用中需要根据具体情况进调整和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值