F5-TTS文本语音合成模型的本地安装和使用 附件一键安装整合包

F5-TTS文本语音合成模型

一、产品简介:

F5-TTS(A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching)是由上海交通大学、剑桥大学和吉利汽车研究院于2024年10月8日联合开源的高性能文本到语音(TTS)系统。它基于流匹配(Flow Matching)的非自回归生成方法,结合扩散变换器(DiT)和ConvNeXt V2技术,具有以下特点:
零样本语音克隆:无需大量训练数据,仅需10-15秒参考音频即可快速克隆目标声音,生成自然、流畅的语音。
多语言支持:支持中文、英文等多种语言的无缝切换,最新版本扩展至法语、意大利语、日语等,适合跨语言语音合成。
情感与速度控制:可根据文本内容调整语音情感(如愤怒、喜悦、悲伤),并支持用户自由控制语速。
高效推理:采用全非自回归架构,实时因素(RTF)达0.15,推理速度远超传统基于扩散的TTS模型。
长文本合成:能在长文本上生成连贯、自然的语音,适用于有声读物、新闻播报等场景。
简化设计:无需复杂的音素对齐或时长预测模块,通过Sway Sampling策略优化推理效率。
在这里插入图片描述

二、项目链接:

F5TTS官网:https://swivid.github.io/F5-TTS/
F5TTS Github:https

三、项目依赖环境:


Git指令安装方法:https://git-scm.com/book/zh/v2/起步-安装-Git
安装方法可以参考大神的文章
Conda安装方法:https

四、安装F5-TTS:


安装好Conda后执行 创建单独的环境

# Create a python 3.10 conda env (you could also use virtualenv)
conda create -n f5-tts python=3.10
conda activate f5-tts

在这里插入图片描述
执行ls 查看是否下载成功
在这里插入图片描述

使用匹配的设备安装 PyTorch
地址:https://pytorch.org/
NVIDIA GPU

pip install torch==2.4.0+cu124 torchaudio==2.4.0+cu124 --extra-index-url https://download.pytorch.org/whl/cu124

AMD GPU

pip install torch==2.5.1+rocm6.2 torchaudio==2.5.1+rocm6.2 --extra-index-url https://download.pytorch.org/whl/rocm6.2

英特尔 GPU

# Install pytorch with your XPU version, e.g.
# Intel® Deep Learning Essentials or Intel® oneAPI Base Toolkit must be installed
pip install torch torchaudio --index-url https://download.pytorch.org/whl/test/xpu

# Intel GPU support is also available through IPEX (Intel® Extension for PyTorch)
# IPEX does not require the Intel® Deep Learning Essentials or Intel® oneAPI Base Toolkit
# See: https://pytorch-extension.intel.com/installation?request=platform

苹果硅片

pip install torch torchaudio

然后您可以从下面选择一项:
作为 pip 包(如果只是为了推断)

pip install f5-tts
  1. 局部可编辑(如果也进行训练、微调)
 git clone https://github.com/SWivid/F5-TTS.git
cd F5-TTS(这是你clone项目的路径)
# git submodule update --init --recursive  # (optional, if need > bigvgan)
pip install -e .

也可使用 Docker

# Build from Dockerfile
docker build -t f5tts:v1 .

# Run from GitHub Container Registry
docker container run --rm -it --gpus=all --mount 'type=volume,source=f5-tts,target=/root/.cache/huggingface/hub/' -p 7860:7860 ghcr.io/swivid/f5-tts:main

# Quickstart if you want to just run the web interface (not CLI)
docker container run --rm -it --gpus=all --mount 'type=volume,source=f5-tts,target=/root/.cache/huggingface/hub/' -p 7860:7860 ghcr.io/swivid/f5-tts:main f5-tts_infer-gradio --host 0.0.0.0

运行时
使用 Triton 和 TensorRT

五、启动Gradio应用程序和推理:


目前支持的功能:

具有块推理的基本 TTS
多风格/多说话人生成
语音聊天由 Qwen2.5-3B-Instruct 提供支持
自定义推理,支持更多语言

# Launch a Gradio app (web interface)
f5-tts_infer-gradio

# Specify the port/host
f5-tts_infer-gradio --port 7860 --host 0.0.0.0
(这是设置端口和ip的 不执行默认会生成)

# Launch a share link
f5-tts_infer-gradio --share

NVIDIA 设备 docker compose 文件示例

services:
  f5-tts:
    image: ghcr.io/swivid/f5-tts:main
    ports:
      - "7860:7860"
    environment:
      GRADIO_SERVER_PORT: 7860
    entrypoint: ["f5-tts_infer-gradio", "--port", "7860", "--host", "0.0.0.0"]
    deploy:
      resources:
        reservations:
          devices:
            - driver: nvidia
              count: 1
              capabilities: [gpu]

volumes:
  f5-tts:
    driver: local

CLI 推理
如果使用推理模型的话需要在这进行下载

# Run with flags
# Leave --ref_text "" will have ASR model transcribe (extra GPU memory usage)
f5-tts_infer-cli --model F5TTS_v1_Base \
--ref_audio "provide_prompt_wav_path_here.wav" \
--ref_text "The content, subtitle or transcription of reference audio." \
--gen_text "Some text you want TTS model generate for you."

# Run with default setting. src/f5_tts/infer/examples/basic/basic.toml
f5-tts_infer-cli
# Or with your own .toml file
f5-tts_infer-cli -c custom.toml

# Multi voice. See src/f5_tts/infer/README.md
f5-tts_infer-cli -c src/f5_tts/infer/examples/multi/story.toml

六、训练:


使用 Gradio App

# Quick start with Gradio web interface
f5-tts_finetune-gradio

关闭程序之后在启动的步骤

conda activate f5-tts
f5-tts_finetune-gradio

七、大模型一键整合包:


这个安装步骤实在是太过麻烦 于是我结合各路大神的思想整理了一个整合包 后续我会上传分享给大家 有20多个G 哈哈

【超级会员V9】通过百度网盘分享的文件:F5-TTS 模...
链接:https://pan.baidu.com/s/1bHdn_ocgzd0_rA16eUwbDQ?pwd=QUG7 
提取码:QUG7 
复制这段内容打开「百度网盘APP 即可获取」
解压7.zip 密码是kive777

启动效果

在这里插入图片描述
代表启动成功 复制URL到浏览器
在这里插入图片描述
UI界面
在这里插入图片描述

单个语音合成 拖入语音
在这里插入图片描述
高级设置可不修改 会按照默认来执行
参考文本:上传音频识别的文字 会自动生成 如果识别不准确可以手动修改 提高输出的效果
删除静音:长文本生成语音后会可能出现长时间空白 (我没有测试出效果 一直使用的默认)
速度:语音的播放速度
交叉淡入淡出持续时间(秒):没有测试
在这里插入图片描述
多人对话
在这里插入图片描述
我觉得看这张图应该就能明白
在这里插入图片描述
语音聊天功能 输入文本或语音可以通过克隆的声音和你对话
在我电脑测试回答延迟很高 可能是我电脑的问题 大家可以试一下
在这里插入图片描述
在这里插入图片描述

### 基于F5-TTS语音合成算法实现 #### F5-TTS概述 F5-TTS 是一种先进的文本到语音 (TTS) 合成模型,该模型融合了扩散模型流匹配技术来提升语音质量生成效率。此模型不仅支持快速训练与推理,还提供了高质量的声音输出[^3]。 #### 实现方法技术细节 ##### 数据准备阶段 为了使F5-TTS能够有效地学习并模仿人类讲话模式,在开始之前需收集大量带标注的音频片段作为训练集。这些数据应当覆盖广泛的语言环境以便更好地泛化至不同场景下使用[^2]。 ##### 特征提取流程 通过特征提取模块处理原始音频信号得到可用于后续建模的关键属性向量序列。这一步骤对于构建稳健可靠的声学模型至关重要,因为准确捕捉声音特性有助于提高最终产出语句的真实度。 ##### 扩散模型的应用 利用扩散模型模拟自然界中的随机游走现象,从而赋予机器创造更加流畅自然的人工话语能力。具体而言,就是在给定初始状态的基础上逐步引入噪声直至达到稳定分布的状态,再逆向操作去除噪音恢复清晰连贯的话语表达形式。 ##### 流匹配机制的作用 采用流匹配策略加速收敛速度的同时保持良好性能表现。这种方法允许系统动态调整内部参数配置以适应变化多端的实际应用场景需求,进而确保高效稳定的运行效果。 ##### 推理部署环节 完成上述各步之后便进入了实际应用层面——即如何将训练好的模型应用于生产环境中提供服务。这里推荐两种方式供开发者选择: 1. **Gradio 应用程序**:适合希望迅速搭建原型或测试新想法的研究人员/爱好者群体; 2. **命令行界面(CLI)** 工具:面向追求灵活性及自动化程度较高的专业用户群体制作而成。 ```python from f5_tts import F5_TTS_Model, GradioApp # 加载预训练模型 model = F5_TTS_Model.load_from_checkpoint("path/to/checkpoint") # 使用Gradio创建交互式web应用程序 app = GradioApp(model=model) if __name__ == "__main__": app.launch() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值